BIOSYNTHESIS OF POLY (HYDROXYALKANOATES)

Authors

  • M Waheed Institute of Molecular Biology & Biotechnology, University of Lahore, Lahore, Pakistan
  • B Mubeen Institute of Molecular Biology & Biotechnology, University of Lahore, Lahore, Pakistan
  • M Sarwar Institute of Molecular Biology & Biotechnology, University of Lahore, Lahore, Pakistan
  • MM Hafeez Institute of Molecular Biology & Biotechnology, University of Lahore, Lahore, Pakistan
  • Q Ali Institute of Molecular Biology & Biotechnology, University of Lahore, Lahore, Pakistan

DOI:

https://doi.org/10.54112/bcsrj.v2021i1.71

Keywords:

PHAs, Bioplastics, Poly Hydroxy Alkanoate, biodegradable, polymers

Abstract

Bioplastics are biodegradable polymers that are made by bacterial cells, whose molecules have biochemical properties similar to petrochemical polymers as they are concentrated inside intracellular granules as a carbon and energy sources, and which then degrade in the environment as they get exposed to light. Bioplastics have desirable biodegradable and renewable qualities, sustainable qualities as well as alternatives to petroleum-based plastics, and is used due to much of its biodegradability and durability. Due to their vast usefulness, Poly Hydroxy Alkanoate (PHAs) and their derivatives are used in many different sectors, PHAs are the most biodegradable bioplastics found throughout the world. These polymers are generated by microorganisms through metabolic pathways that start with hydroxy-acyl-A and end with different types of acyl-A. Bioplastic polymers have chemical characteristics that differ in structural and physical properties which also differ due to the source of their polymerization microorganisms.

Downloads

Download data is not yet available.

References

Adams, R., Jeanrenaud, S., Bessant, J., Denyer, D., and Overy, P. (2016). Sustainability‐oriented innovation: A systematic review. International Journal of Management Reviews 18, 180-205.

Aminabhavi, T., Balundgi, R., and Cassidy, P. (1990). A review on biodegradable plastics. Polymer-Plastics Technology and Engineering 29, 235-262.

Anjum, A., Zuber, M., Zia, K. M., Noreen, A., Anjum, M. N., and Tabasum, S. (2016). Microbial production of polyhydroxyalkanoates (PHAs) and its copolymers: a review of recent advancements. International journal of biological macromolecules 89, 161-174.

Avella, M., De Vlieger, J. J., Errico, M. E., Fischer, S., Vacca, P., and Volpe, M. G. (2005). Biodegradable starch/clay nanocomposite films for food packaging applications. Food chemistry 93, 467-474.

Boons, F., Montalvo, C., Quist, J., and Wagner, M. (2013). Sustainable innovation, business models and economic performance: an overview. Journal of Cleaner Production 45, 1-8.

Brockhaus, S., Petersen, M., and Kersten, W. (2016). A crossroads for bioplastics: exploring product developers' challenges to move beyond petroleum-based plastics. Journal of Cleaner Production 127, 84-95.

Brodin, M., Vallejos, M., Opedal, M. T., Area, M. C., and Chinga-Carrasco, G. (2017). Lignocellulosics as sustainable resources for production of bioplastics–A review. Journal of Cleaner Production 162, 646-664.

Burniol-Figols, A., Varrone, C., Le, S. B., Daugaard, A. E., Skiadas, I. V., and Gavala, H. N. (2018). Combined polyhydroxyalkanoates (PHA) and 1, 3-propanediol production from crude glycerol: Selective conversion of volatile fatty acids into PHA by mixed microbial consortia. Water research 136, 180-191.

Chanprateep, S. (2010). Current trends in biodegradable polyhydroxyalkanoates. Journal of bioscience and bioengineering 110, 621-632.

Chen, G.-Q. (2009). A microbial polyhydroxyalkanoates (PHA) based bio-and materials industry. Chemical Society Reviews 38, 2434-2446.

Ciesielski, S., Cydzik‐Kwiatkowska, A., Pokoj, T., and Klimiuk, E. (2006). Molecular detection and diversity of medium‐chain‐length polyhydroxyalkanoates‐producing bacteria enriched from activated sludge. Journal of applied microbiology 101, 190-199.

De Schryver, P., Crab, R., Defoirdt, T., Boon, N., and Verstraete, W. (2008). The basics of bio-flocs technology: the added value for aquaculture. Aquaculture 277, 125-137.

Gedikli, S., Çelik, P. A., Demirbilek, M., Mutlu, M. B., Denkbaş, E. B., and Çabuk, A. (2019). Experimental exploration of thermostable poly (β-hydroxybutyrates) by Geobacillus kaustophilus using Box-Behnken Design. Journal of Polymers and the Environment 27, 245-255.

Geissdoerfer, M., Bocken, N. M., and Hultink, E. J. (2016). Design thinking to enhance the sustainable business modelling process–A workshop based on a value mapping process. Journal of Cleaner Production 135, 1218-1232.

Gonzalez, K., Navia, R., Liu, S., and Cea, M. (2020). Biological Approaches in Polyhydroxyalkanoates Recovery. Current Microbiology, 1-10.

Hatti-Kaul, R., Nilsson, L. J., Zhang, B., Rehnberg, N., and Lundmark, S. (2020). Designing biobased recyclable polymers for plastics. Trends in biotechnology 38, 50-67.

Iles, A., and Martin, A. N. (2013). Expanding bioplastics production: sustainable business innovation in the chemical industry. Journal of Cleaner Production 45, 38-49.

Koller, M. (2018). Biodegradable and biocompatible polyhydroxy-alkanoates (PHA): Auspicious microbial macromolecules for pharmaceutical and therapeutic applications. Molecules 23, 362.

Kouřilová, X., Schwarzerová, J., Pernicová, I., Sedlář, K., Mrázová, K., Krzyžánek, V., Nebesářová, J., and Obruča, S. (2021). The First Insight into Polyhydroxyalkanoates Accumulation in Multi-Extremophilic Rubrobacter xylanophilus and Rubrobacter spartanus. Microorganisms 9, 909.

Kourmentza, C., Costa, J., Azevedo, Z., Servin, C., Grandfils, C., De Freitas, V., and Reis, M. (2018). Burkholderia thailandensis as a microbial cell factory for the bioconversion of used cooking oil to polyhydroxyalkanoates and rhamnolipids. Bioresource technology 247, 829-837.

Kourmentza, C., Plácido, J., Venetsaneas, N., Burniol-Figols, A., Varrone, C., Gavala, H. N., and Reis, M. A. (2017). Recent advances and challenges towards sustainable polyhydroxyalkanoate (PHA) production. Bioengineering 4, 55.

Kumar, M., Rathour, R., Singh, R., Sun, Y., Pandey, A., Gnansounou, E., Lin, K.-Y. A., Tsang, D. C., and Thakur, I. S. (2020a). Bacterial polyhydroxyalkanoates: Opportunities, challenges, and prospects. Journal of Cleaner Production, 121500.

Kumar, V., Kumar, S., Darnal, S., Patial, V., Singh, A., Thakur, V., Kumar, S., and Singh, D. (2019). Optimized chromogenic dyes-based identification and quantitative evaluation of bacterial l-asparaginase with low/no glutaminase activity bioprospected from pristine niches in Indian trans-Himalaya. 3 Biotech 9, 1-9.

Kumar, V., Kumar, S., and Singh, D. (2020b). Microbial polyhydroxyalkanoates from extreme niches: Bioprospection status, opportunities and challenges. International journal of biological macromolecules 147, 1255-1267.

Kumar, V., Thakur, V., Kumar, S., and Singh, D. (2018). Bioplastic reservoir of diverse bacterial communities revealed along altitude gradient of Pangi-Chamba trans-Himalayan region. FEMS microbiology letters 365, fny144.

Kunasundari, B., and Sudesh, K. (2011). Isolation and recovery of microbial polyhydroxyalkanoates. Express Polymer Letters 5.

Kusi-Sarpong, S., Gupta, H., and Sarkis, J. (2019). A supply chain sustainability innovation framework and evaluation methodology. International Journal of Production Research 57, 1990-2008.

Laycock, B., Halley, P., Pratt, S., Werker, A., and Lant, P. (2013). The chemomechanical properties of microbial polyhydroxyalkanoates. Progress in polymer science 38, 536-583.

Lee, W. S., Chua, A. S. M., Yeoh, H. K., and Ngoh, G. C. (2014). A review of the production and applications of waste-derived volatile fatty acids. Chemical Engineering Journal 235, 83-99.

Lemoigne, M. (1926). Produits de deshydration et de polymerisation de l'acide β= oxybutyrique. Bull. Soc. Chim. Biol. 8, 770-782.

Lu, J., Tappel, R. C., and Nomura, C. T. (2009). Mini-review: biosynthesis of poly (hydroxyalkanoates). Journal of Macromolecular Science®, Part C: Polymer Reviews 49, 226-248.

Luckachan, G. E., and Pillai, C. (2011). Biodegradable polymers-a review on recent trends and emerging perspectives. Journal of Polymers and the Environment 19, 637-676.

Manavitehrani, I., Fathi, A., Badr, H., Daly, S., Negahi Shirazi, A., and Dehghani, F. (2016). Biomedical applications of biodegradable polyesters. Polymers 8, 20.

Mascarenhas, J., and Aruna, K. (2017). Screening of polyhydroxyalkonates (PHA) accumulating bacteria from diverse habitats. J Global Biosci 6, 4835-48.

Neutzling, D. M., Land, A., Seuring, S., and do Nascimento, L. F. M. (2018). Linking sustainability-oriented innovation to supply chain relationship integration. Journal of Cleaner Production 172, 3448-3458.

Obruca, S., Sedlacek, P., Slaninova, E., Fritz, I., Daffert, C., Meixner, K., Sedrlova, Z., and Koller, M. (2020). Novel unexpected functions of PHA granules. Applied microbiology and biotechnology 104, 4795-4810.

Raza, Z. A., Abid, S., and Banat, I. M. (2018). Polyhydroxyalkanoates: Characteristics, production, recent developments and applications. International Biodeterioration & Biodegradation 126, 45-56.

Rydz, J., Sikorska, W., Kyulavska, M., and Christova, D. (2015). Polyester-based (bio) degradable polymers as environmentally friendly materials for sustainable development. International journal of molecular sciences 16, 564-596.

Salehizadeh, H., and Van Loosdrecht, M. (2004). Production of polyhydroxyalkanoates by mixed culture: recent trends and biotechnological importance. Biotechnology advances 22, 261-279.

Sathicq, M. B., Sabatino, R., Corno, G., and Di Cesare, A. (2021). Are microplastic particles a hotspot for the spread and the persistence of antibiotic resistance in aquatic systems? Environmental Pollution, 116896.

Singh, M., Patel, S. K., and Kalia, V. C. (2009). Bacillus subtilis as potential producer for polyhydroxyalkanoates. Microbial cell factories 8, 1-11.

Singh Saharan, B., Grewal, A., and Kumar, P. (2014). Biotechnological production of polyhydroxyalkanoates: a review on trends and latest developments. Chinese Journal of Biology 2014.

Tan, G.-Y. A., Chen, C.-L., Li, L., Ge, L., Wang, L., Razaad, I. M. N., Li, Y., Zhao, L., Mo, Y., and Wang, J.-Y. (2014). Start a research on biopolymer polyhydroxyalkanoate (PHA): a review. Polymers 6, 706-754.

Venkatachalam, H., and Palaniswamy, R. (2020). BIOPLASTIC WORLD: A REVIEW. Journal of Advanced Scientific Research 11.

Verlinden, R. A., Hill, D. J., Kenward, M., Williams, C. D., and Radecka, I. (2007). Bacterial synthesis of biodegradable polyhydroxyalkanoates. Journal of applied microbiology 102, 1437-1449.

Webb, H. K., Arnott, J., Crawford, R. J., and Ivanova, E. P. (2013). Plastic degradation and its environmental implications with special reference to poly (ethylene terephthalate). Polymers 5, 1-18.

Yamane, T. (1992). Cultivation engineering of microbial bioplastics production. FEMS microbiology reviews 9, 257-264.

Zhang, X., Fevre, M., Jones, G. O., and Waymouth, R. M. (2018). Catalysis as an enabling science for sustainable polymers. Chemical reviews 118, 839-885.

Downloads

Published

2021-05-27

How to Cite

Waheed, M., Mubeen, B., Sarwar, M., Hafeez, M., & Ali, Q. (2021). BIOSYNTHESIS OF POLY (HYDROXYALKANOATES). Biological and Clinical Sciences Research Journal, 2021(1). https://doi.org/10.54112/bcsrj.v2021i1.71

Issue

Section

Review Articles

Most read articles by the same author(s)

<< < 1 2 3 4 5 6 7 > >>