• ARA DOGAR Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore Pakistan
  • M ALI Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore Pakistan
  • Z RIAZ Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore Pakistan
  • Q ALI Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab Lahore, Pakistan
  • S Ahmad Department of Entomology, Faculty of Agricultural Sciences, University of the Punjab Lahore, Pakistan
  • MA JAVED Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab Lahore, Pakistan



crop yield, biotic stresses, conventional breeding, CRISPR/Cas9 system, gene editing


Climate changes and increasing human population is experiencing by most of the countries throughout the world, so, for production of crops with enhanced adaptation to the environment and high yield reliance through conventional breeding technologies seemed to be fully supporting now a days. It requires those techniques that increase crop yield in less time through developing resistance of plants for stress factors. Fortunately, for improvement of crops under the abiotic and biotic stress conditions, clustered regularly interspaced short palindromic repeat (CRISPR) approach provided a way towards new horizon and consequently revolutionizing the plant breeding approach. This review article presents the optimization and mechanism of CRISPR strategy and its huge number of applications for crop improvement like domestication, fruit quality improvement, resistance to abiotic and biotic stresses is most highlighted aspect. In this review article there is a brief summary about CRISPR/Cas9 technique and its role in increasing agricultural yield by gene knock in or knock out. It also presents number of evidence based studies where this approach has been used for making plants resistant to biotic factors. Future perspectives and controversies have also been discussed.


Download data is not yet available.


Abdelrahman, M., Al-Sadi, A. M., Pour-Aboughadareh, A., Burritt, D. J., & Tran, L. S. P. (2018). Genome editing using CRISPR/Cas9–targeted mutagenesis: An opportunity for yield improvements of crop plants grown under environmental stresses. Plant Physiology and Biochemistry, 131, 31-36.

Amitai, G., & Sorek, R. (2016). CRISPR–Cas adaptation: insights into the mechanism of action. Nature Reviews Microbiology, 14(2), 67-76.

Arora, L., & Narula, A. (2017). Gene editing and crop improvement using CRISPR-Cas9 system. Frontiers in plant Science, 8, 1932.

Bhatta, B. P., & Malla, S. (2020). Improving horticultural crops via CRISPR/Cas9: Current successes and prospects. Plants, 9(10), 1360.

Bhowmik, P., Ellison, E., Polley, B., Bollina, V., Kulkarni, M., Ghanbarnia, K., ... & Kagale, S. (2018). Targeted mutagenesis in wheat microspores using CRISPR/Cas9. Scientific Reports, 8(1), 1-10.

Borca, M. V., Holinka, L. G., Berggren, K. A., & Gladue, D. P. (2018). CRISPR-Cas9, a tool to efficiently increase the development of recombinant African swine fever viruses. Scientific Reports, 8(1), 1-6.

Borrelli, V. M., Brambilla, V., Rogowsky, P., Marocco, A., & Lanubile, A. (2018). The enhancement of plant disease resistance using CRISPR/Cas9 technology. Frontiers in Plant Science, 9, 1245.

Bostock, R. M., Pye, M. F., &Roubtsova, T. V. (2014). Predisposition in plant disease: exploiting the nexus in abiotic and biotic stress perception and response. Annual Review of phytopathology, 52, 517-549.

Brooks, C., Nekrasov, V., Lippman, Z. B., & Van Eck, J. (2014). Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR-associated9 system. Plant physiology, 166(3), 1292-1297.

Čermák, T., Curtin, S. J., Gil-Humanes, J., Čegan, R., Kono, T. J., Konečná, E., ... & Voytas, D. F. (2017). A multipurpose toolkit to enable advanced genome engineering in plants. The Plant Cell, 29(6), 1196-1217.

Chandrasekaran, J., Brumin, M., Wolf, D., Leibman, D., Klap, C., Pearlsman, M., ... & Gal‐On, A. (2016). Development of broad virus resistance in non‐transgenic cucumber using CRISPR/Cas9 technology. Molecular Plant Pathology, 17(7), 1140-1153.

Chang, Z., Chen, Z., Yan, W., Xie, G., Lu, J., Wang, N., ... & Tang, X. (2016). An ABC transporter, OsABCG26, is required for anther cuticle and pollen exine formation and pollen-pistil interactions in rice. Plant Science, 253, 21-30.

Chen, X., Lu, X., Shu, N., Wang, S., Wang, J., Wang, D., ... & Ye, W. (2017). Targeted mutagenesis in cotton (Gossypium hirsutum L.) using the CRISPR/Cas9 system. Scientific Reports, 7(1), 1-7.

Cyranoski, D., & Ledford, H. (2018). Genome-edited baby claim provokes international outcry. Nature, 563(7733), 607-608.

Dangl, J. L., & Jones, J. D. (2001). Plant pathogens and integrated defense responses to infection. Nature, 411(6839), 826-833.

Datsenko, K. A., Pougach, K., Tikhonov, A., Wanner, B. L., Severinov, K., & Semenova, E. (2012). Molecular memory of prior infections activates the CRISPR/Cas adaptive bacterial immunity system. Nature Communications, 3(1), 1-7.

de Wit, P. J. (2007). How plants recognize pathogens and defend themselves. Cellular and Molecular Life Sciences, 64(21), 2726-2732.

Doudna, J. A., & Charpentier, E. (2014). The new frontier of genome engineering with CRISPR-Cas9. Science, 346(6213).

Fan, D., Liu, T., Li, C., Jiao, B., Li, S., Hou, Y., & Luo, K. (2015). Efficient CRISPR/Cas9-mediated targeted mutagenesis in Populus in the first generation. Scientific Reports, 5(1), 1-7.

Fister, A. S., Landherr, L., Maximova, S. N., &Guiltinan, M. J. (2018). Transient expression of CRISPR/Cas9 machinery targeting TcNPR3 enhances defense response in Theobroma cacao. Frontiers in Plant Science, 9, 268.

Fraser, E. D. (2012). The house is both empty and sad: Social Vulnerability, Environmental Disturbance, Economic Change and the Irish Potato Famine. In Assessing Vulnerability to Global Environmental Change (pp. 49-62). Routledge.

Frye, C. A., Tang, D., & Innes, R. W. (2001). Negative regulation of defense responses in plants by a conserved MAPKK kinase. Proceedings of the National Academy of Sciences, 98(1), 373-378.

Gimenez‐Ibanez, S., Boter, M., Ortigosa, A., García‐Casado, G., Chini, A., Lewsey, M. G., ... & Solano, R. (2017). JAZ 2 controls stomata dynamics during bacterial invasion. New Phytologist, 213(3), 1378-1392.

Göhre, V., &Robatzek, S. (2008). Breaking the barriers: microbial effector molecules subvert plant immunity. Annu. Rev. Phytopathol., 46, 189-215.

Gull, A., Lone, A. A., & Wani, N. U. I. (2019). Biotic and abiotic stresses in plants. Abiotic and Biotic Stress in Plants, 1-19.

Gurumurthy, C. B., Grati, M. H., Ohtsuka, M., Schilit, S. L., Quadros, R. M., & Liu, X. Z. (2016). CRISPR: a versatile tool for both forward and reverse genetics research. Human Genetics, 135(9), 971-976.

Humphry, M., Consonni, C., &Panstruga, R. (2006). mlo‐based powdery mildew immunity: silver bullet or simply non‐host resistance?. Molecular Plant Pathology, 7(6), 605-610.

Jia, H., Zhang, Y., Orbović, V., Xu, J., White, F. F., Jones, J. B., & Wang, N. (2017). Genome editing of the disease susceptibility gene Cs LOB 1 in citrus confers resistance to citrus canker. Plant Biotechnology Journal, 15(7), 817-823.

Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., & Charpentier, E. (2012). A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science, 337(6096), 816-821.

Jung, J., Won, S. Y., Suh, S. C., Kim, H., Wing, R., Jeong, Y., ... & Kim, M. (2007). The barley ERF-type transcription factor HvRAF confers enhanced pathogen resistance and salt tolerance in Arabidopsis. Planta, 225(3), 575-588.

Kasim, W. A., Gaafar, R. M., Abou-Ali, R. M., Omar, M. N., & Hewait, H. M. (2016). Effect of biofilm forming plant growth promoting rhizobacteria on salinity tolerance in barley. Annals of Agricultural Sciences, 61(2), 217-227.

Koslová, A., Kučerová, D., Reinišová, M., Geryk, J., Trefil, P., &Hejnar, J. (2018). Genetic resistance to avian leukosis viruses induced by CRISPR/Cas9 editing of specific receptor genes in chicken cells. Viruses, 10(11), 605.

Langner, T., Kamoun, S., & Belhaj, K. (2018). CRISPR crops: plant genome editing toward disease resistance. Annual review of Phytopathology, 56, 479-512.

Liu, X., Xie, C., Si, H., & Yang, J. (2017). CRISPR/Cas9-mediated genome editing in plants. Methods, 121, 94-102.

Ma, X., Feng, F., Wei, H., Mei, H., Xu, K., Chen, S., ... & Luo, L. (2016). Genome-wide association study for plant height and grain yield in rice under contrasting moisture regimes. Frontiers in Plant Science, 7, 1801.

Macovei, A., Sevilla, N. R., Cantos, C., Jonson, G. B., Slamet‐Loedin, I., Čermák, T., ... & Chadha‐Mohanty, P. (2018). Novel alleles of rice eIF4G generated by CRISPR/Cas9‐targeted mutagenesis confer resistance to Rice tungro spherical virus. Plant Biotechnology Journal, 16(11), 1918-1927.

Malnoy, M., Viola, R., Jung, M. H., Koo, O. J., Kim, S., Kim, J. S., ... & Nagamangala Kanchiswamy, C. (2016). DNA-free genetically edited grapevine and apple protoplast using CRISPR/Cas9 ribonucleoproteins. Frontiers in Plant Science, 7, 1904.

Mao, Y., Zhang, H., Xu, N., Zhang, B., Gou, F., & Zhu, J. K. (2013). Application of the CRISPR–Cas system for efficient genome engineering in plants. Molecular Plant, 6(6), 2008.

Miao, J., Guo, D., Zhang, J., Huang, Q., Qin, G., Zhang, X., ... & Qu, L. J. (2013). Targeted mutagenesis in rice using CRISPR-Cas system. Cell Research, 23(10), 1233-1236.

Miller, A. J., & Gross, B. L. (2011). From forest to field: perennial fruit crop domestication. American journal of Botany, 98(9), 1389-1414.

Mishra, R., Joshi, R. K., & Zhao, K. (2018). Genome editing in rice: recent advances, challenges, and future implications. Frontiers in Plant Science, 9, 1361.

Nekrasov, V., Wang, C., Win, J., Lanz, C., Weigel, D., & Kamoun, S. (2017). Rapid generation of a transgene-free powdery mildew resistant tomato by genome deletion. Scientific Reports, 7(1), 1-6.

O’Donnell, K., Kistler, H. C., Cigelnik, E., & Ploetz, R. C. (1998). Multiple evolutionary origins of the fungus causing Panama disease of banana: concordant evidence from nuclear and mitochondrial gene genealogies. Proceedings of the National Academy of Sciences, 95(5), 2044-2049.

Ort, D. R., Merchant, S. S., Alric, J., Barkan, A., Blankenship, R. E., Bock, R., ... & Zhu, X. G. (2015). Redesigning photosynthesis to sustainably meet global food and bioenergy demand. Proceedings of the National Academy of Sciences, 112(28), 8529-8536.

Ortigosa, A., Gimenez‐Ibanez, S., Leonhardt, N., & Solano, R. (2019). Design of a bacterial speck resistant tomato by CRISPR/Cas9‐mediated editing of Sl JAZ 2. Plant Biotechnology Journal, 17(3), 665-673.

Pan, C., Ye, L., Qin, L., Liu, X., He, Y., Wang, J., ... & Lu, G. (2016). CRISPR/Cas9-mediated efficient and heritable targeted mutagenesis in tomato plants in the first and later generations. Scientific Reports, 6(1), 1-9.

Peng, A., Chen, S., Lei, T., Xu, L., He, Y., Wu, L., ... & Zou, X. (2017). Engineering canker‐resistant plants through CRISPR/Cas9‐targeted editing of the susceptibility gene Cs LOB 1 promoter in citrus. Plant biotechnology journal, 15(12), 1509-1519.

Prihatna, C., Barbetti, M. J., & Barker, S. J. (2018). A novel tomato fusarium wilt tolerance gene. Frontiers in Microbiology, 9, 1226.

Pyott, D. E., Sheehan, E., & Molnar, A. (2016). Engineering of CRISPR/Cas9‐mediated potyvirus resistance in transgene‐free Arabidopsis plants. Molecular Plant Pathology, 17(8), 1276-1288.

Ren, C., Liu, X., Zhang, Z., Wang, Y., Duan, W., Li, S., & Liang, Z. (2016). CRISPR/Cas9-mediated efficient targeted mutagenesis in Chardonnay (Vitis vinifera L.). Scientific Reports, 6(1), 1-9.

Ricroch, A., Clairand, P., & Harwood, W. (2017). Use of CRISPR systems in plant genome editing: toward new opportunities in agriculture. Emerging Topics in Life Sciences, 1(2), 169-182.

Sah, S. K., Reddy, K. R., & Li, J. (2016). Abscisic acid and abiotic stress tolerance in crop plants. Frontiers in plant science, 7, 571.

Sentmanat, M. F., Peters, S. T., Florian, C. P., Connelly, J. P., & Pruett-Miller, S. M. (2018). A survey of validation strategies for CRISPR-Cas9 editing. Scientific Reports, 8(1), 1-8.

Schaart, J. G., van de Wiel, C. C., Lotz, L. A., & Smulders, M. J. (2016). Opportunities for products of new plant breeding techniques. Trends in Plant Science, 21(5), 438-449.

Sergeant, K., & Renaut, J. (2010). Plant biotic stress and proteomics. Current Proteomics, 7(4), 275-297.

Sorek, R., Lawrence, C. M., & Wiedenheft, B. (2013). CRISPR-mediated adaptive immune systems in bacteria and archaea. Annual Review of Biochemistry, 82, 237-266.

Tang, L., Mao, B., Li, Y., Lv, Q., Zhang, L., Chen, C., ... & Zhao, B. (2017). Knockout of OsNramp5 using the CRISPR/Cas9 system produces low Cd-accumulating indica rice without compromising yield. Scientific Reports, 7(1), 1-12.

Tashkandi, M., Ali, Z., Aljedaani, F., Shami, A., & Mahfouz, M. M. (2018). Engineering resistance against Tomato yellow leaf curl virus via the CRISPR/Cas9 system in tomato. Plant Signaling & Behavior, 13(10), e1525996.

Ueta, R., Abe, C., Watanabe, T., Sugano, S. S., Ishihara, R., Ezura, H., ... & Osakabe, K. (2017). Rapid breeding of parthenocarpic tomato plants using CRISPR/Cas9. Scientific Reports, 7(1), 1-8.

Vats, S., Kumawat, S., Kumar, V., Patil, G. B., Joshi, T., Sonah, H., ... & Deshmukh, R. (2019). Genome editing in plants: exploration of technological advancements and challenges. Cells, 8(11), 1386.

Velásquez, A. C., Castroverde, C. D. M., & He, S. Y. (2018). Plant–pathogen warfare under changing climate conditions. Current Biology, 28(10), R619-R634.

Vella, M. R., Gunning, C. E., Lloyd, A. L., & Gould, F. (2017). Evaluating strategies for reversing CRISPR-Cas9 gene drives. Scientific Reports, 7(1), 1-8.

Verma, S., Nizam, S., & Verma, P. K. (2013). Biotic and abiotic stress signaling in plants. In Stress Signaling in Plants: Genomics and Proteomics Perspective, Volume 1 (pp. 25-49). Springer, New York, NY.

Voytas, D. F., & Gao, C. (2014). Precision genome engineering and agriculture: opportunities and regulatory challenges. PLoS Biology, 12(6), e1001877.

Wang, F., Wang, C., Liu, P., Lei, C., Hao, W., Gao, Y., ... & Zhao, K. (2016). Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922. PloS one, 11(4), e0154027.

Wang, M., Zheng, Q., Shen, Q., & Guo, S. (2013). The critical role of potassium in plant stress response. International journal of Molecular Sciences, 14(4), 7370-7390.

Wang, T., Deng, Z., Zhang, X., Wang, H., Wang, Y., Liu, X., ... & Zhu, H. (2018). Tomato DCL2b is required for the biosynthesis of 22-nt small RNAs, the resulting secondary siRNAs, and the host defense against ToMV. Horticulture Research, 5(1), 1-14.

Wang, X., Tu, M., Wang, D., Liu, J., Li, Y., Li, Z., ... & Wang, X. (2018). CRISPR/Cas9‐mediated efficient targeted mutagenesis in grape in the first generation. Plant Biotechnology Journal, 16(4), 844-855.

World Health Organization. (2019). Trends in maternal mortality 2000 to 2017: estimates by WHO, UNICEF, UNFPA, World Bank Group and the United Nations Population Division.

Wu, J., Vilarino, M., Suzuki, K., Okamura, D., Bogliotti, Y. S., Park, I., ... & Belmonte, J. C. I. (2017). CRISPR-Cas9 mediated one-step disabling of pancreatogenesis in pigs. Scientific Reports, 7(1), 1-6.

Xu, R., Yang, Y., Qin, R., Li, H., Qiu, C., Li, L., ... & Yang, J. (2016). Rapid improvement of grain weight via highly efficient CRISPR/Cas9-mediated multiplex genome editing in rice. Journal of Genetics and Genomics= Yi chuanxue bao, 43(8), 529-532.

Ye, L., Wang, J., Tan, Y., Beyer, A. I., Xie, F., Muench, M. O., & Kan, Y. W. (2016). Genome editing using CRISPR-Cas9 to create the HPFH genotype in HSPCs: An approach for treating sickle cell disease and β-thalassemia. Proceedings of the National Academy of Sciences, 113(38), 10661-10665.

Yin, K., Gao, C., & Qiu, J. L. (2017). Progress and prospects in plant genome editing. Nature Plants, 3(8), 1-6.

Yu, W., Zhao, R., Sheng, J., & Shen, L. (2018). SlERF2 is associated with methyl jasmonate-mediated defense response against Botrytis cinerea in tomato fruit. Journal of Agricultural and Food Chemistry, 66(38), 9923-9932.

Zaidi, S. S. E. A., Tashkandi, M., Mansoor, S., & Mahfouz, M. M. (2016). Engineering plant immunity: using CRISPR/Cas9 to generate virus resistance. Frontiers in Plant Science, 7, 1673.

Zeilmaker, T., Ludwig, N. R., Elberse, J., Seidl, M. F., Berke, L., Van Doorn, A., ... & Van den Ackerveken, G. (2015). DOWNY MILDEW RESISTANT 6 and DMR 6‐LIKE OXYGENASE 1 are partially redundant but distinct suppressors of immunity in Arabidopsis. The Plant Journal, 81(2), 210-222.

Zhang, S., Wang, L., Zhao, R., Yu, W., Li, R., Li, Y., ... & Shen, L. (2018). Knockout of SlMAPK3 reduced disease resistance to Botrytis cinerea in tomato plants. Journal of Agricultural and Food Chemistry, 66(34), 8949-8956.

Zhang, T., Zheng, Q., Yi, X., An, H., Zhao, Y., Ma, S., & Zhou, G. (2018). Establishing RNA virus resistance in plants by harnessing CRISPR immune system. Plant Biotechnology Journal, 16(8), 1415-1423.

Zhang, Y., Bai, Y., Wu, G., Zou, S., Chen, Y., Gao, C., & Tang, D. (2017). Simultaneous modification of three homoeologs of Ta EDR 1 by genome editing enhances powdery mildew resistance in wheat. The Plant Journal, 91(4), 714-724.

Zhu, J. K. (2002). Salt and drought stress signal transduction in plants. Annual review of Plant Biology, 53(1), 247-273.




How to Cite

DOGAR, A., ALI, M., RIAZ, Z. ., ALI, Q., Ahmad, S., & JAVED, M. (2022). ROLE OF CRISPR TO IMPROVE STRESS TOLERANCE IN PLANTS . Biological and Clinical Sciences Research Journal, 2022(1).



Review Articles

Most read articles by the same author(s)

1 2 3 4 5 > >>