ROLE OF CRISPR TO IMPROVE ABIOTIC STRESS TOLERANCE IN CROP PLANTS
DOI:
https://doi.org/10.54112/bcsrj.v2021i1.69Keywords:
CRISPR, crops, Quantitative trait loci, biotic stress, TALEN, abiotic stress, ZFNAbstract
The study for genetic variation in plant genomes for a variety of crops, as well as developments of genome editing techniques, have made it possible to cultivate for about any desired trait. Zinc finger enzymes; have made strides in genome-editing. Molecular biologists can now more specifically target every gene using transcription activator-like effector nucleases and ZFNs. These methods, on the other hand, are expensive and time-consuming because they involve complex procedures. Referring to various genome editing techniques, CRISPR/Cas9 genetic modification is simple to construct and clone and the Cas9 could be used with different guide RNAs controlling different genes. Following solid evidence demonstrations using the main CRISPR-Cas9 unit in field crops, multiple updated Cas9 cassettes are often used in plant species to improve target precision and reduce off target cleavage. Nmcas9, Sacas9, as well as Stcas9 are a few examples. Furthermore, Cas9 enzymes are readily available from a variety of sources. Bacteria that had never been discovered before has found solutions available to improve specificity and efficacy of gene editing techniques. The choices are summarized in this analysis to plant's experiment to develop crops using CRISPR/Cas9 technology; the tolerance of biotic & abiotic stress may be improved. These strategies will lead to the growth of non-genetically engineered crops with the target phenotype, which will further improve yield capacity under biotic & abiotic stress environments.
Downloads
References
Andersson, M., Turesson, H., Nicolia, A., Falt, A. S., Samuelsson, M., and Hofvander, P. (2017). Efficient targeted multiallelic mutagenesis in tetraploid potato (Solanum tuberosum) by transient CRISPR-Cas9 expression in protoplasts. Plant Cell Reports 36, 117–128.
Bertier, L. D., Ron, M., Huo, H., Bradford, K. J., Britt, A. B., and Michelmore,R. W. (2018). High-resolution analysis of the efficiency, heritability, andediting outcomes of CRISPR-Cas9 -induced modifications of NCED4 in lettuce (Lactuca sativa). G3 8: 1513–1521.
Brooks, C., Nekrasov, V., Lippman, Z. B., and Van Eck, J. (2014). Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR-associated9 system. Plant Physiology 166, 1292–1297.
Butler, N. M., Baltes, N. J., Voytas, D. F., and Douches, D. S. (2016). Geminivirus-mediated genome editing in potato (Solanum tuberosum L.) using sequence- specific nucleases. Frontiers in Plant Science 7:1045.01045
Cai, Y., Chen, L., Liu, X., Guo, C., Sun, S., Wu, C., et al. (2018). CRISPR/Cas9-mediated targeted mutagenesis of GmFT2a delays flowering time in soybean. Plant Biotechnology Journal 16, 176–185.
Cermak, T., Doyle, E. L., Christian, M., Wang, L., Zhang, Y., Schmidt, C., et al.(2011). Efficient design and assembly of custom TALEN and other TAL effectorbased constructs for DNA targeting. Nucleic Acids Research 39:e82.
Chen, K., and GAO, C. (2013). TALENs: customizable molecular DNA scissors for
Du, H., Zeng, X., Zhao, M., Cui, X., Wang, Q., Yang, H., et al. (2016). Efficienttargeted mutagenesis in soybean by TALENs and CRISPR/Cas9. Journal of Biotechnology 217, 90–97.
Endo, A., Masafumi, M., Kaya, H., and Toki, S. (2016). Efficient targeted mutagenesis of rice and tobacco genomes using Cpf1 from Francisella novicida. Scientific Reports 6:38169.
Fang, Y., and Tyler, B. M. (2016). Efficient disruption and replacement of aneffector gene in the Oomycete Phytophthora sojae using CRISPR/Cas9. Molecular Plant Pathology 17, 127–139.
Feng, C., Yuan, J., Wang, R., Liu, Y., Birchler, J. A., and Han, F. (2016). Efficienttargeted genome modification in maize using CRISPR/Cas9 system. Journal of Genetics and Genomics 43, 37–43.
Feng, Z., Mao, Y., Xu, N., Zhang, B., Wei, P., Yang, D. L., et al. (2014).Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/Cas-induced gene modifications in Arabidopsis. Proceedings National Academy Science USA 111, 4632–4637.
Gaj, T., Gersbach, C. A., and Barbas, C. F. III (2013). ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends in Biotechnology 31,397–405.
Gil-Humanes, J., Wang, Y., Liang, Z., Shan, Q., Ozuna, C. V., Sanchez-Leon, S., et al. (2017). High-efficiency gene targeting in hexaploid wheat using DNA replicons and CRISPR/Cas9. Plant Journal 89, 1251–1262.
Govindan, G., and Ramalingam, S. (2016). Programmable site-specific nucleasesfor targeted genome engineering in higher eukaryotes. Journal of Cell Physiology 231,2380–2392.
Hayut, S. F., Melamed Bessudo, C., and Levy, A. A. (2017). Targeted recombination between homologous chromosomes for precise breeding in tomato. Nature Communication 8:15605.
Hu, X., Meng, X., Liu, Q., Li, J., and Wang, K. (2018). Increasing the efficiencyof CRISPR-Cas9-VQR precise genome editing in rice. Plant Biotechnology Journal 16,292–297.
Ishino, Y., Shinagawa, H., Makino, K., Amemura, M., and Nakata, A. (1987).Nucleotide sequence of the IAP gene, responsible for alkaline phosphataseisozyme conversion in Escherichia coli, and identification of the gene product. Journal of Bacteriology 169, 5429-5433.
Ito, Y., Nishizawa-Yokoi, A., Endo, M., Mikami, M., and Toki, S. (2015).CRISPR/Cas9-mediated mutagenesis of the RIN locus that regulates tomato fruit ripening. Biochemical and Biophysical Research Communications 467, 76–82.
Janga, M. R., Campbell, L. M., and Rathore, K. S. (2017). CRISPR/Cas9-mediatedtargeted mutagenesis in upland cotton (Gossypium hirsutum L.). Plant Molecular Biology 94, 349–360.
Jansen, R., Embden, J. D. V., Gaastra, W., and Schouls, L. M. (2002). Identification of genes that are associated with DNA repeats in prokaryotes. Molecular Microbiology 43, 1565–1575.
Ji, X., Zhang, H., Zhang, Y., Wang, Y., and Gao, C. (2015). Establishing a CRISPRCas-like immune system conferring DNA virus resistance in plants. Nature Plants 1:15144.
Jiang, W., Zhou, H., Bi, H., Fromm, M., Yang, B., and Weeks, D. P. (2013).Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modificationin Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Research 41:e188.
Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., and Charpentier,(2012). A programmable dual-RNA–guided DNA endonuclease in adaptivebacterial immunity. Science 337, 816–821.
Kapusi, E., Corcuera-Gomez, M., Melnik, S., and Stoger, E. (2017). Heritablegenomic fragment deletions and small indels in the putative engase geneinduced by CRISPR/Cas9 in barley. Frontiers in Plant Science 8:540.
Karkute, S. G.,Singh, A. K., Gupta, O. P., Singh, P. M., and Singh, B. (2017).CRISPR/Cas9 mediated genome engineering for improvement of horticulturalcrops. Frontiers in Plant Science 8:1635.
Kaur, N., Alok, A., Shivani Kaur, N., Pandey, P., Awasthi, P., and Tiwari, S.(2018). CRISPR/Cas9-mediated efficient editing in phytoene desaturase (PDS) demonstrates precise manipulation in banana cv. Rasthali genome. Functional and Integrated Genomics 18, 89–99.
Kim, D., Alptekin, B., and Budak, H. (2018). CRISPR/Cas9 genome editing in wheat. Funct. Integr. Genomics 18, 31–41.
Lee, C. M., Cradick, T. J., and Bao, G. (2016). The Neisseria meningitidis CRISPRCas9 system enables specific genome editing in mammalian cells. Molecular Therapy 24, 645–654.
Li, C., Hao, M., Wang, W., Wang, H., Chen, F., Chu, W., et al. (2018). An efficient CRISPR/cas9 platform for rapidly generating simultaneous mutagenesis of multiple gene homoeologs in allotetraploid oilseed rape. Frontiers in Plant Science 9:442.
Li, C., Unver, T., and Zhang, B. (2017). A high-efficiency CRISPR/Cas9 systemfor targeted mutagenesis in Cotton (Gossypium hirsutum L.). Science Reports 7:43902.
Li, F., Fan, G., Lu, C., Xiao, G., Zou, C., Kohel, R. J., et al. (2015). Genome sequence of cultivated upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution. Nature Biotechnology 33, 524–530.
Ma, X., Zhu, Q., Chen, Y., and Liu, Y. G. (2016). CRISPR/Cas9 platformsfor genome editing in plants: developments and applications. Molecular Plant 9,961–974.
Mali, P., Aach, J., Stranges, P. B., Esvelt, K. M., Moosburner, M., Kosuri, S.,et al. (2013). CAS9 transcriptional activators for target specificity screeningand paired nickases for cooperative genome engineering. Nature Biotechnology 31, 833–838.
Malnoy, M., Viola, R., Jung, M. H., Koo, O. J., Kim, S., Kim, J. S., et al. (2016). DNAFree genetically edited grapevine and apple protoplast using CRISPR/Cas9 ribonucleoproteins. Frontiers in Plant Science 7:1904.
Osakabe, Y., and Osakabe, K. (2015). Genome editing with engineered nucleases inplants. Plant Cell Physiology 56, 389–400.
Osakabe, Y., Watanabe, T., Sugano, S. S., Ueta, R., Ishihara, R., Shinozaki, K., et al.(2016). Optimization of CRISPR/Cas9 genome editing to modify abiotic stress responses in plants. Science Reports 6:26685.
Pan, C., Ye, L., Qin, L., Liu, X., He, Y., Wang, J., et al. (2016). CRISPR/Cas9-mediated efficient and heritable targeted mutagenesis in tomato plants in thefirst and later generations. Science Reports 6:24765.
Pauwels, K., Podevin, N., Breyer, D., Carroll, D., and Herman, P. (2014).Engineering nucleases for gene targeting: safety and regulatory considerations. Nature Biotechnology 31, 18–27.
Ran, F. A., Cong, L., Yan, W. X., Scott, D. A., Gootenberg, J. S., Kriz, A. J., et al.(2015). In vivo genome editing using Staphylococcus aureus Cas9. Nature 520,186–191.
Ren, C., Liu, X., Zhang, Z., Wang, Y., Duan, W., Li, S., et al. (2016). CRISPR/Cas9mediated efficient targeted mutagenesis in chardonnay (Vitis vinifera L.). Science Reports 6:32289.
Ricroch, A., Clairand, P., and Harwood, W. (2017). Use of CRISPR systems in plant genome editing: toward new opportunities in agriculture. Emerg. Top. Life Sci.1, 169–182.
Ron, M., Kajala, K., Pauluzzi, G., Wang, D., Reynoso, M. A., Zumstein, K., et al. (2014). Hairy root transformation using Agrobacterium rhizogenes asa tool for exploring cell type-specific gene expression and function using tomato as a model. Plant Physiology 166, 455–469.
Shan, Q., Wang, Y., Li, J., and GAO, C. (2014). Genome editing in rice and wheat using the CRISPR/Cas system. Nature Protocol 9, 2395–2410.
Shan, Q., Wang, Y., Li, J., Zhang, Y., Chen, K., Liang, Z., et al. (2013).Targeted genome modification of crop plants using a CRISPR-Cas system. Nature Biotechnology 31, 686–688.
Shi, J., GAO, H., Wang, H., Lafitte, H. R., Archibald, R. L., Yang, M., et al. (2017).ARGOS8 variants generated by CRISPR-Cas9 improve maize grain yield under Field drought stress conditions. Plant Biotechnology Journal 15, 207–216.
Shimatani, Z., Kashojiya, S., Takayama, M., Terada, R., Arazoe, T., Ishii, H., et al. (2017). Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion. Nature Biotechnology 35, 441–443.
Tang, F., Yang, S., Liu, J., and Zhu, H. (2016). Rj4, a gene controlling nodulationspecificity in soybeans, encodes a thaumatin-like protein but not the onepreviously reported. Plant Physiology 170, 26–32.
Ueta, R., Abe, C., Watanabe, T., Sugano, S. S., Ishihara, R., Ezura, H., et al. (2017).Rapid breeding of parthenocarpic tomato plants using CRISPR/Cas9. Science Reports 7:507.
Waltz, E. (2018). With a free pass, CRISPR-edited plants reach market in record time. Nature Biotechnology 36, 6–7.
Wang, F., Wang, C., Liu, P., Lei, C., Hao, W., Gao, Y., et al. (2016). Enhanced riceblast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922. PLoS One 11:e0154027.
Wang, Z. P., Xing, H. L., Dong, L., Zhang, H. Y., Han, C. Y., Wang, X. C.,et al. (2015). Egg cell-specific promoter-controlled CRISPR/Cas9 efficientlyenerates homozygous mutants for multiple target genes in Arabidopsis in asingle generation. Genome Biology 16:144.
Watanabe, K., Oda-Yamamizo, C., Sage-Ono, K., Ohmiya, A., and Ono, M. (2018).Alteration of flower colour in Ipomoea nil through CRISPR/Cas9-mediated mutagenesis of carotenoid cleavage dioxygenase 4. Transgenic Research 27, 25–38.
Xie, K., and Yang, Y. (2013). RNA-guided genome editing in plants using aCRISPR-Cas system. Molecular Plant 6, 1975-1983.
Xu, H., Xiao, T., Chen, C. H., Li, W., Meyer, C. A., Wu, Q., et al. (2015). Sequencedeterminants of improved CRISPR sgRNA design. Genome Research 25, 1147-1157.
Yang, Y., Zhu, G., Li, R., Yan, S., Fu, D., Zhu, B., et al. (2017). The RNA editing factor SlORRM4 is required for normal fruit ripening in tomato. Plant Physiology 175, 1690-1702.
Zetsche, B., Heidenreich, M., Mohanraju, P., Fedorova, I., Kneppers, J., DeGennaro, E. M., et al. (2017). Multiplex gene editing by CRISPR-Cpf1 usinga single crRNA array. Nature Biotechnology 35, 31-34.
Zhang, F., LeBlanc, C., Irish, V. F., and Jacob, Y. (2017). Rapid and efficient CRISPR/Cas9 gene editing in citrus using the YAO promoter. Plant Cell Reports 36, 1883–1887.
Zhang, H., Zhang, J., Wei, P., Zhang, B., Gou, F., Feng, Z., et al. (2014). TheCRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnology Journal. 12, 797–807.
Zhang, Z., Ge, X., Luo, X., Wang, P., Fan, Q., Hu, G., et al. (2018). Simultaneous editing of two copies of Gh14-3-3d confers enhanced transgene-clean plant defense against Verticillium dahliae in allotetraploid upland cotton. Frontiers in Plant Science 7: 842
Zhang, Y., Zhang, F., Li, X., Baller, J. A., Qi, Y., Starker, C. G., et al. (2013). Transcription activator-like effector nucleases enable efficient plant genome engineering. Plant Physiology 161, 20–27.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 MU Farooq, MF Bashir, MUS Khan, B Iqbal, Q Ali
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.