IMPROVEMENT FOR BIOTIC AND ABIOTIC STRESS TOLERANCE IN CROP PLANTS

Authors

  • M Ahmad Institute of Molecular Biology & Biotechnology, University of Lahore, Lahore, Pakistan
  • Q Ali Institute of Molecular Biology & Biotechnology, University of Lahore, Lahore, Pakistan
  • MM Hafeez Institute of Molecular Biology & Biotechnology, University of Lahore, Lahore, Pakistan
  • A Malik Institute of Molecular Biology & Biotechnology, University of Lahore, Lahore, Pakistan

DOI:

https://doi.org/10.54112/bcsrj.v2021i1.50

Keywords:

biotechnology, biotic, abiotic, stress, environment, herbivorous insects, pathogens, parasites

Abstract

The field of biotechnology has extraordinary influence on science, law, the administrative condition social insurance, and business throughout the world. As the starting of agriculture, people have been manipulating crops to improve the yield and quantity. Product yields throughout the world are essentially diminished by the activity of herbivorous insects, pathogens, and parasites. Natural environmental stresses make this circumstance significantly worse. Biotechnology can be used to increase the yield of food crops, to improve biotic and abiotic stress tolerance, to modify the traits of the plant (e.g. oil content, percentage of lignin, cell structure), to make the conversion to liquid biofuels more efficient. Various genes have been discovered for biotic and abiotic stress tolerance. The genes discovered for biotic stress are aryloxyalkanoate, dioxygenase, enzymes (aad-1), nitrilase, Cry1Ac, Cry2AB, GTgene, AFP (anti-freezing protein gene) gene, Chitinase II and III gene, and Rps1-k. The genes discovered for abiotic stress are SgNCED1, SgNCED1, USP2, HSP70, BADH, and ALO, PVNCED1, HVA1, LeNCED1. CRISPRs (clustered regularly interspaced short palindromic repeats) are the short DNA sequences present in bacteria and archaeal genomes which are now currently used by researchers to edit the genome. In different plant species (calli, leaf discs) protoplasts have been successfully used to edit their genome through CRISPR/Cas9 system. The aims of the applications are to increase resistance to abiotic or biotic stress, to engineer metabolic pathways, and to increase grain yield. Incorporation of modern biotechnology, with regular traditional practices in a sustainable way, can fulfill the objective of achieving food security for the present and as well as in future.

Downloads

Download data is not yet available.

References

AbuQamar, S., Luo, H., Laluk, K., Mickelbart, M. V., and Mengiste, T. (2009). Crosstalk between biotic and abiotic stress responses in tomato is mediated by the AIM1 transcription factor. The Plant Journal 58, 347-360.

Ahanger, M. A., Akram, N. A., Ashraf, M., Alyemeni, M. N., Wijaya, L., and Ahmad, P. (2017). Plant responses to environmental stresses—from gene to biotechnology. AoB Plants 9.

Aktar, W., Sengupta, D., and Chowdhury, A. (2009). Impact of pesticides use in agriculture: their benefits and hazards. Interdisciplinary toxicology 2, 1-12.

Amrao, L., Amin, I., Shahid, M. S., Briddon, R. W., and Mansoor, S. (2010). Cotton leaf curl disease in resistant cotton is associated with a single begomovirus that lacks an intact transcriptional activator protein. Virus research 152, 153-163.

An, G., Costa, M. A., and Ha, S.-B. (1990). Nopaline synthase promoter is wound inducible and auxin inducible. The Plant Cell 2, 225-233.

Antony, G., Zhou, J., Huang, S., Li, T., Liu, B., White, F., and Yang, B. (2010). Rice xa13 recessive resistance to bacterial blight is defeated by induction of the disease susceptibility gene Os-11N3. The plant cell 22, 3864-3876.

Atkinson, N. J., and Urwin, P. E. (2012). The interaction of plant biotic and abiotic stresses: from genes to the field. Journal of experimental botany 63, 3523-3543.

Ban, Q., Wang, X., Pan, C., Wang, Y., Kong, L., Jiang, H., Xu, Y., Wang, W., Pan, Y., and Li, Y. (2017). Comparative analysis of the response and gene regulation in cold resistant and susceptible tea plants. PLoS One 12, e0188514.

Banerjee, S., Banerjee, A., Gill, S. S., Gupta, O. P., Dahuja, A., Jain, P. K., and Sirohi, A. (2017). RNA interference: a novel source of resistance to combat plant parasitic nematodes. Frontiers in plant science 8, 834.

Bebber, D. P., Ramotowski, M. A., and Gurr, S. J. (2013). Crop pests and pathogens move polewards in a warming world. Nature climate change 3, 985-988.

Bilal, M., Nasir, I., Tabassum, B., Akrem, A., Ahmad, A., and Ali, Q. (2020). Cytotoxicity and in-vitro antiviral activity of lectin from Crocus vernus l. against potato virus Y. Applied Ecology and Environmental Research 18, 1301-1315.

Bordenave, C. D., Escaray, F. J., Menendez, A. B., Serna, E., Carrasco, P., Ruiz, O. A., and Gárriz, A. (2013). Defense responses in two ecotypes of Lotus japonicus against non-pathogenic Pseudomonas syringae. PLoS One 8, e83199.

Bu, Q. Y., Wu, L., Yang, S. H., and Wan, J. M. (2006). Cloning of a potato proteinase inhibitor gene PINII‐2x from diploid potato (Solanum phurejia L.) and transgenic investigation of its potential to confer insect resistance in rice. Journal of Integrative Plant Biology 48, 732-739.

Calvert, L., and Thresh, J. M. (2002). The viruses and virus diseases of cassava. Cassava: biology, production and utilization, 237-260.

Cao, J., Shelton, A. M., and Earle, E. D. (2001). Gene expression and insect resistance in transgenic broccoli containing a Bacillus thuringiensis cry1Ab gene with the chemically inducible PR-1a promoter. Molecular Breeding 8, 207-216.

Chen, Y., Ghanem, M. E., and Siddique, K. H. (2017). Characterising root trait variability in chickpea (Cicer arietinum L.) germplasm. Journal of Experimental Botany 68, 1987-1999.

Christou, P., and Twyman, R. M. (2004). The potential of genetically enhanced plants to address food insecurity. Nutrition research reviews 17, 23-42.

Costa, A., and Kitajima, E. (1972). Studies on virus and mycoplasma diseases of the cassava plant in Brazil. In "Proceedings IDRC/IITA cassava mosaic workshop. International Institute of Tropical Agriculture, Ibadan, Nigeria".

Coyne, D. L., Cortada, L., Dalzell, J. J., Claudius-Cole, A. O., Haukeland, S., Luambano, N., and Talwana, H. (2018). Plant-parasitic nematodes and food security in Sub-Saharan Africa. Annual review of phytopathology 56, 381-403.

Dangl, J. L., Horvath, D. M., and Staskawicz, B. J. (2013). Pivoting the plant immune system from dissection to deployment. Science 341, 746-751.

Daryanto, S., Wang, L., and Jacinthe, P.-A. (2016). Global synthesis of drought effects on maize and wheat production. PloS one 11, e0156362.

De Coninck, B., Cammue, B. P., and Thevissen, K. (2013). Modes of antifungal action and in planta functions of plant defensins and defensin-like peptides. Fungal Biology Reviews 26, 109-120.

Farooq, M., Gogoi, N., Barthakur, S., Baroowa, B., Bharadwaj, N., Alghamdi, S. S., and Siddique, K. (2017a). Drought stress in grain legumes during reproduction and grain filling. Journal of Agronomy and Crop Science 203, 81-102.

Farooq, M., Gogoi, N., Hussain, M., Barthakur, S., Paul, S., Bharadwaj, N., Migdadi, H. M., Alghamdi, S. S., and Siddique, K. H. (2017b). Effects, tolerance mechanisms and management of salt stress in grain legumes. Plant Physiology and Biochemistry 118, 199-217.

Gao, W., Long, L., Tian, X., Xu, F., Liu, J., Singh, P. K., Botella, J. R., and Song, C. (2017). Genome editing in cotton with the CRISPR/Cas9 system. Frontiers in plant science 8, 1364.

Gnanamanickam, S., Priyadarisini, V. B., Narayanan, N., Vasudevan, P., and Kavitha, S. (1999). An overview of bacterial blight disease of rice and strategies for its management. Current Science, 1435-1444.

Godard, K.-A. (2007). A molecular approach to study the monoterpene-induced response in Arabidopsis thaliana, University of British Columbia.

Godard, K.-A., Byun-McKay, A., Levasseur, C., Plant, A., Séguin, A., and Bohlmann, J. (2007). Testing of a heterologous, wound-and insect-inducible promoter for functional genomics studies in conifer defense. Plant Cell Reports 26, 2083-2090.

Godard, K.-A., White, R., and Bohlmann, J. (2008). Monoterpene-induced molecular responses in Arabidopsis thaliana. Phytochemistry 69, 1838-1849.

Hossain, M. A., Li, Z.-G., Hoque, T. S., Burritt, D. J., Fujita, M., and Munné-Bosch, S. (2018). Heat or cold priming-induced cross-tolerance to abiotic stresses in plants: key regulators and possible mechanisms. Protoplasma 255, 399-412.

Huot, B., Yao, J., Montgomery, B. L., and He, S. Y. (2014). Growth–defense tradeoffs in plants: a balancing act to optimize fitness. Molecular plant 7, 1267-1287.

Isman, M. B., and Grieneisen, M. L. (2014). Botanical insecticide research: many publications, limited useful data. Trends in Plant Science 19, 140-145.

Jan, N., Majeed, U., Andrabi, K. I., and John, R. (2018). Cold stress modulates osmolytes and antioxidant system in Calendula officinalis. Acta Physiologiae Plantarum 40, 73.

John, R., Anjum, N., Sopory, S., Akram, N., and Ashraf, M. (2016). Some key physiological and molecular processes of cold acclimation. Biologia plantarum 60, 603-618.

Key, S., Ma, J. K., and Drake, P. M. (2008). Genetically modified plants and human health. Journal of the Royal Society of Medicine 101, 290-298.

Kim, K.-H., Kabir, E., and Jahan, S. A. (2017). Exposure to pesticides and the associated human health effects. Science of the Total Environment 575, 525-535.

Kim, S.-R., Kim, Y., and An, G. (1993). Identification of methyl jasmonate and salicylic acid response elements from the nopaline synthase (nos) promoter. Plant Physiology 103, 97-103.

Kumar, V., Shriram, V., Kishor, P. K., Jawali, N., and Shitole, M. (2010). Enhanced proline accumulation and salt stress tolerance of transgenic indica rice by over-expressing P5CSF129A gene. Plant Biotechnology Reports 4, 37-48.

Lamaoui, M., Jemo, M., Datla, R., and Bekkaoui, F. (2018). Heat and drought stresses in crops and approaches for their mitigation. Frontiers in chemistry 6, 26.

Law, J. W.-F., Ser, H.-L., Khan, T. M., Chuah, L.-H., Pusparajah, P., Chan, K.-G., Goh, B.-H., and Lee, L.-H. (2017). The potential of Streptomyces as biocontrol agents against the rice blast fungus, Magnaporthe oryzae (Pyricularia oryzae). Frontiers in microbiology 8, 3.

Li, J.-F., Norville, J. E., Aach, J., McCormack, M., Zhang, D., Bush, J., Church, G. M., and Sheen, J. (2013). Multiplex and homologous recombination–mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nature biotechnology 31, 688-691.

Liu, T.-H. A., Stephens, L. C., and Hannapel, D. J. (1996). Expression of a chimeric proteinase inhibitor II-GUS gene in transgenic Solanum brevidens plants. Journal of plant physiology 149, 533-538.

Mabe, F. N., Talabi, K., and Danso-Abbeam, G. (2017). Awareness of health implications of agrochemical use: effects on maize production in Ejura-Sekyedumase municipality, Ghana. Advances in Agriculture 2017.

Mahmood, Q., Bilal, M., and Jan, S. (2014). Herbicides, pesticides, and plant tolerance: an overview. In "Emerging technologies and management of crop stress tolerance", pp. 423-448. Elsevier.

Mattah, M. M., Mattah, P. A., and Futagbi, G. (2015). Pesticide application among farmers in the catchment of Ashaiman irrigation scheme of Ghana: health implications. Journal of Environmental and Public Health 2015.

Moffat, A. S. (1999). Geminiviruses emerge as serious crop threat. Science 286, 1835-1835.

Mundt, C. C. (2014). Durable resistance: a key to sustainable management of pathogens and pests. Infection, Genetics and Evolution 27, 446-455.

Puthoff, D. P., Holzer, F. M., Perring, T. M., and Walling, L. L. (2010). Tomato pathogenesis-related protein genes are expressed in response to Trialeurodes vaporariorum and Bemisia tabaci biotype B feeding. Journal of Chemical Ecology 36, 1271-1285.

Qazi, J., Amin, I., Mansoor, S., Iqbal, M. J., and Briddon, R. W. (2007). Contribution of the satellite encoded gene βC1 to cotton leaf curl disease symptoms. Virus Research 128, 135-139.

Ramessar, K., Peremarti, A., Gómez-Galera, S., Naqvi, S., Moralejo, M., Munoz, P., Capell, T., and Christou, P. (2007). Biosafety and risk assessment framework for selectable marker genes in transgenic crop plants: a case of the science not supporting the politics. Transgenic research 16, 261-280.

Ronald, P. C., Albano, B., Tabien, R., Abenes, L., Wu, K.-s., McCouch, S., and Tanksley, S. D. (1992). Genetic and physical analysis of the rice bacterial blight disease resistance locus, Xa21. Molecular and General Genetics MGG 236, 113-120.

Sattar, M. N., Kvarnheden, A., Saeed, M., and Briddon, R. W. (2013). Cotton leaf curl disease–an emerging threat to cotton production worldwide. Journal of General Virology 94, 695-710.

Savary, S., Teng, P. S., Willocquet, L., and Nutter Jr, F. W. (2006). Quantification and modeling of crop losses: a review of purposes. Annu. Rev. Phytopathol. 44, 89-112.

Sehgal, A., Sita, K., Siddique, K. H., Kumar, R., Bhogireddy, S., Varshney, R. K., HanumanthaRao, B., Nair, R. M., Prasad, P., and Nayyar, H. (2018). Drought or/and heat-stress effects on seed filling in food crops: impacts on functional biochemistry, seed yields, and nutritional quality. Frontiers in plant science 9, 1705.

Siddique, S., Wieczorek, K., Szakasits, D., Kreil, D. P., and Bohlmann, H. (2011). The promoter of a plant defensin gene directs specific expression in nematode-induced syncytia in Arabidopsis roots. Plant physiology and biochemistry 49, 1100-1107.

Singh, A., and Singh, I. K. (2018). "Molecular aspects of plant-pathogen interaction," Springer.

Steuernagel, B., Periyannan, S. K., Hernández-Pinzón, I., Witek, K., Rouse, M. N., Yu, G., Hatta, A., Ayliffe, M., Bariana, H., and Jones, J. D. (2016). Rapid cloning of disease-resistance genes in plants using mutagenesis and sequence capture. Nature biotechnology 34, 652-655.

Strange, R. N., and Scott, P. R. (2005). Plant disease: a threat to global food security. Annual review of phytopathology 43.

Tahir, M. N., Amin, I., Briddon, R. W., and Mansoor, S. (2011). The merging of two dynasties—identification of an African cotton leaf curl disease-associated begomovirus with cotton in Pakistan. PLoS One 6, e20366.

Thakur, A., Sharma, K. D., Siddique, K. H., and Nayyar, H. (2020). Cold priming the chickpea seeds imparts reproductive cold tolerance by reprogramming the turnover of carbohydrates, osmo-protectants and redox components in leaves. Scientia Horticulturae 261, 108929.

Varma, A., and Malathi, V. (2003). Emerging geminivirus problems: a serious threat to crop production. Annals of Applied Biology 142, 145-164.

Varsani, A., Navas-Castillo, J., Moriones, E., Hernández-Zepeda, C., Idris, A., Brown, J. K., Zerbini, F. M., and Martin, D. P. (2014). Establishment of three new genera in the family Geminiviridae: Becurtovirus, Eragrovirus and Turncurtovirus. Archives of virology 159, 2193-2203.

War, A. R., Paulraj, M. G., Ahmad, T., Buhroo, A. A., Hussain, B., Ignacimuthu, S., and Sharma, H. C. (2012). Mechanisms of plant defense against insect herbivores. Plant signaling & behavior 7, 1306-1320.

Wu, X., Kriz, A. J., and Sharp, P. A. (2014). Target specificity of the CRISPR-Cas9 system. Quantitative biology 2, 59-70.

Yan, L., Zhai, Q., Wei, J., Li, S., Wang, B., Huang, T., Du, M., Sun, J., Kang, L., and Li, C.-B. (2013). Role of tomato lipoxygenase D in wound-induced jasmonate biosynthesis and plant immunity to insect herbivores. PLoS Genet 9, e1003964.

Yang, B., Sugio, A., and White, F. F. (2006). Os8N3 is a host disease-susceptibility gene for bacterial blight of rice. Proceedings of the National Academy of Sciences 103, 10503-10508.

Ye, H., Roorkiwal, M., Valliyodan, B., Zhou, L., Chen, P., Varshney, R. K., and Nguyen, H. T. (2018). Genetic diversity of root system architecture in response to drought stress in grain legumes. Journal of Experimental Botany 69, 3267-3277.

Yoon, M.-Y., Cha, B., and Kim, J.-C. (2013). Recent trends in studies on botanical fungicides in agriculture. The plant pathology journal 29, 1.

Yu, X., Li, B., Fu, Y., Jiang, D., Ghabrial, S. A., Li, G., Peng, Y., Xie, J., Cheng, J., and Huang, J. (2010). A geminivirus-related DNA mycovirus that confers hypovirulence to a plant pathogenic fungus. Proceedings of the National Academy of Sciences 107, 8387-8392.

Yu, X., Wang, G., Huang, S., Ma, Y., and Xia, L. (2014). Engineering plants for aphid resistance: current status and future perspectives. Theoretical and applied genetics 127, 2065-2083.

Yuan, D., Bassie, L., Sabalza, M., Miralpeix, B., Dashevskaya, S., Farre, G., Rivera, S. M., Banakar, R., Bai, C., and Sanahuja, G. (2011). The potential impact of plant biotechnology on the Millennium Development Goals. Plant cell reports 30, 249-265.

Zhang, F., Wen, Y., and Guo, X. (2014). CRISPR/Cas9 for genome editing: progress, implications and challenges. Human molecular genetics 23, R40-R46.

Zhang, J.-C., Pu, R.-L., Wang, J.-H., Huang, W.-J., Yuan, L., and Luo, J.-H. (2012). Detecting powdery mildew of winter wheat using leaf level hyperspectral measurements. Computers and Electronics in Agriculture 85, 13-23.

Zhou, X. (2013). Advances in understanding begomovirus satellites. Annual review of phytopathology 51.

Zhu-Salzman, K., Salzman, R. A., Ahn, J.-E., and Koiwa, H. (2004). Transcriptional regulation of sorghum defense determinants against a phloem-feeding aphid. Plant physiology 134, 420-431.

Zhu, C., Sanahuja, G., Yuan, D., Farré, G., Arjó, G., Berman, J., Zorrilla‐López, U., Banakar, R., Bai, C., and Pérez‐Massot, E. (2013). Biofortification of plants with altered antioxidant content and composition: genetic engineering strategies. Plant biotechnology journal 11, 129-141.

Downloads

Published

2021-01-23

How to Cite

Ahmad, M., Ali, Q., Hafeez, M., & Malik, A. (2021). IMPROVEMENT FOR BIOTIC AND ABIOTIC STRESS TOLERANCE IN CROP PLANTS. Biological and Clinical Sciences Research Journal, 2021(1). https://doi.org/10.54112/bcsrj.v2021i1.50

Issue

Section

Review Articles

Most read articles by the same author(s)

1 2 3 4 5 6 7 8 9 10 > >>