Organ regeneration

Authors

  • S Naseem Institute of Molecular Biology & Biotechnology, University of Lahore, Lahore, Pakistan
  • Noor-Us-Saba Institute of Molecular Biology & Biotechnology, University of Lahore, Lahore, Pakistan
  • S Sharif Institute of Molecular Biology & Biotechnology, University of Lahore, Lahore, Pakistan
  • M Yasir Institute of Molecular Biology & Biotechnology, University of Lahore, Lahore, Pakistan
  • Z Noor Institute of Molecular Biology & Biotechnology, University of Lahore, Lahore, Pakistan
  • S Hanif Emergency Department, Bahria Town International Hospital Lahore-Pakistan

DOI:

https://doi.org/10.54112/bcsrj.v2021i1.77

Keywords:

regression, stem cells, tissues, cardiovascular, liver cells

Abstract

The term regeneration refers to an intricate chain of occasions that establishes a tissue to its unique shape and size. As not all organisms can recover body parts and not all the tissues inside a body can be similarly fixed. Stem cells holding the capacity of cell renewal. As these are the specific cells in which the development and regeneration of the tissue system and organ take place. Regeneration is the reconstruction or rebuilding of the mass of an organ or, design, alongside the capacity after a harm, which is essential for human well-being. Many invertebrates have incredible regenerative limits. The review explains how the regeneration process occurs in different organisms and how different animals perform their regeneration processes like the regeneration in Zebrafish, Starfish, Deer antlers, and Planaria. The liver has a particular capacity to remit to a reliable size within a short period after injury. Liver recuperation incorporates hyperplasia of all existing cell sorts of the liver. A cardiovascular breakdown can arise out of various over-the-top modifying measures. Preparing of different cells and permeable platform materials that have been incorporated to improve cell maintenance. In vivo techniques for heart, recovery depends on delicate cell-permeable framework interfacial tissue designing, including regular foundational microorganism types and biomaterials. Whereas, in vitro generation of beating 3D cardiac patches is advancing in the regenerative field.

Downloads

Download data is not yet available.

References

Abdalla, S., Makhoul, G., Duong, M., Chiu, R. C., & Cecere, R. (2013). Hyaluronic acid-based hydrogel induces neovascularization and improves cardiac function in a rat model of myocardial infarction. Interactive Cardiovascular and Thoracic Surgery, 17(5), 767-772.

Abshagen, K., Eipel, C., & Vollmar, B. (2012). A critical appraisal of the hemodynamic signal driving liver regeneration. Langenbeck's Archives of Surgery, 397(4), 579-590.

Alvarado, A. S. (2000). Regeneration in the metazoans: why does it happen?. Bioessays, 22(6), 578-590.

Ausoni, S., & Sartore, S. (2009). From fish to amphibians to mammals: in search of novel strategies to optimize cardiac regeneration. Journal of Cell Biology, 184(3), 357-364.

Avasthi, S., Srivastava, R. N., Singh, A., & Srivastava, M. (2008). Stem cell: past, present and future--a review article. Internet Journal of Medical Update, 3(1), 22-31.

Bacakova, L., Zarubova, J., Travnickova, M., Musilkova, J., Pajorova, J., Slepicka, P., ... & Molitor, M. (2018). Stem cells: their source, potency and use in regenerative therapies with focus on adipose-derived stem cells–a review. Biotechnology Advances, 36(4), 1111-1126.

Becker, C. G., & Becker, T. (2015). Neuronal regeneration from ependymo-radial glial cells: cook, little pot, cook!. Developmental Cell, 32(4), 516-527.

Birnbaum, K. D., & Alvarado, A. S. (2008). Slicing across kingdoms: regeneration in plants and animals. Cell, 132(4), 697-710.

Bishop, A. E., Buttery, L. D., & Polak, J. M. (2002). Embryonic stem cells. The Journal of Pathology: A Journal of the Pathological Society of Great Britain and Ireland, 197(4), 424-429.

Bode, H. R. (2003). Head regeneration in Hydra. Developmental dynamics: an official publication of the American Association of Anatomists, 226(2), 225-236

Bolli, R., Chugh, A. R., D'Amario, D., Loughran, J. H., Stoddard, M. F., Ikram, S., ... & Anversa, P. (2011). Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. The Lancet, 378(9806), 1847-1857.

Brockes JP (1998) Regeneration and cancer. Biochim Biophys Acta 1377, M1–M11.

Brockes, J. P. (1997). Amphibian limb regeneration: rebuilding a complex structure. Science, 276(5309), 81-87.

Brockes, J. P., & Kumar, A. (2002). Plasticity and reprogramming of differentiated cells in amphibian regeneration. Nature Reviews Molecular Cell Biology, 3(8), 566-574.

Brockes, J. P., & Kumar, A. (2008). Comparative aspects of animal regeneration. Annual Review of Cell and Developmental Biology, 24, 525-549.

Brockes, J. P., Kumar, A., & Velloso, C. P. (2001). Regeneration as an evolutionary variable. Journal of Anatomy, 199(1‐2), 3-11.

Chi, N. H., Yang, M. C., Chung, T. W., Chou, N. K., & Wang, S. S. (2013). Cardiac repair using chitosan-hyaluronan/silk fibroin patches in a rat heart model with myocardial infarction. Carbohydrate Polymers, 92(1), 591-597.

Chiu, L. L., & Radisic, M. (2011). Controlled release of thymosin β4 using collagen–chitosan composite hydrogels promotes epicardial cell migration and angiogenesis. Journal of Controlled Release, 155(3), 376-385.

Cho, G. S., Fernandez, L., & Kwon, C. (2014). Regenerative medicine for the heart: perspectives on stem-cell therapy. Antioxidants & Redox Signaling, 21(14), 2018-2031.

Clavien, P. A., Petrowsky, H., DeOliveira, M. L., & Graf, R. (2007). Strategies for safer liver surgery and partial liver transplantation. New England Journal of Medicine, 356(15), 1545-1559.

Crumm, S., Cofan, M., Juskeviciute, E., & Hoek, J. B. (2008). Adenine nucleotide changes in the remnant liver: An early signal for regeneration after partial hepatectomy. Hepatology, 48(3), 898-908.

Davis, M. E., Hsieh, P. C., Grodzinsky, A. J., & Lee, R. T. (2005). Custom design of the cardiac microenvironment with biomaterials. Circulation research, 97(1), 8-15.

De Simone, A., Evanitsky, M. N., Hayden, L., Cox, B. D., Wang, J., Tornini, V. A., ... & Di Talia, S. (2021). Control of osteoblast regeneration by a train of Erk activity waves. Nature, 590(7844), 129-133.

Deng, B., Shen, L., Wu, Y., Shen, Y., Ding, X., Lu, S., ... & Ge, J. (2015). Delivery of alginate‐chitosan hydrogel promotes endogenous repair and preserves cardiac function in rats with myocardial infarction. Journal of Biomedical Materials Research Part A, 103(3), 907-918.

Deng, C., Zhang, P., Vulesevic, B., Kuraitis, D., Li, F., Yang, A. F., ... & Suuronen, E. J. (2010). A collagen–chitosan hydrogel for endothelial differentiation and angiogenesis. Tissue Engineering Part A, 16(10), 3099-3109.

Dhar, D. K., Mohammad, G. H., Vyas, S., Broering, D. C., & Malago, M. (2015). A novel rat model of liver regeneration: possible role of cytokine induced neutrophil chemoattractant-1 in augmented liver regeneration. Annals of Surgical Innovation and Research, 9(1), 1-10.

Diaz Quiroz, J. F., & Echeverri, K. (2013). Spinal cord regeneration: where fish, frogs and salamanders lead the way, can we follow?. Biochemical Journal, 451(3), 353-364.

Ding, Y., Dvornikov, A. V., Ma, X., Zhang, H., Wang, Y., Lowerison, M., ... & Xu, X. (2019). Haploinsufficiency of mechanistic target of rapamycin ameliorates bag3 cardiomyopathy in adult zebrafish. Disease Models & Mechanisms, 12(10).

Driever, W., Solnica-Krezel, L., Schier, A. F., Neuhauss, S. C., Malicki, J., Stemple, D. L., ... & Boggs, C. (1996). A genetic screen for mutations affecting embryogenesis in zebrafish. Development, 123(1), 37-46.

Duncan, A. W., Dorrell, C., & Grompe, M. (2009). Stem cells and liver regeneration. Gastroenterology, 137(2), 466-481.

Dvornikov, A. V., Wang, M., Yang, J., Zhu, P., Le, T., Lin, X., ... & Xu, X. (2019). Phenotyping an adult zebrafish lamp2 cardiomyopathy model identifies mTOR inhibition as a candidate therapy. Journal of Molecular and Cellular Cardiology, 133, 199-208.

Fausto, N. (2006). Campbell js, Riehle KJ. Liver regeneration. Hepatology, 43, S45-S53.

Fratz, S., Hager, A., Schreiber, C., Schwaiger, M., Hess, J., & Stern, H. C. (2011). Long-term myocardial scarring after operation for anomalous left coronary artery from the pulmonary artery. The Annals of Thoracic Surgery, 92(5), 1761-1765.

Gaballa, M. A., Sunkomat, J. N., Thai, H., Morkin, E., Ewy, G., & Goldman, S. (2006). Grafting an acellular 3-dimensional collagen scaffold onto a non-transmural infarcted myocardium induces neo-angiogenesis and reduces cardiac remodeling. The Journal of Heart and Lung Transplantation, 25(8), 946-954.

Galliot, Brigitte. "Regeneration in hydra." eLS. Wiley, Chichester (2013).

Goessling, W., & North, T. E. (2014). Repairing quite swimmingly: advances in regenerative medicine using zebrafish. Disease models & mechanisms, 7(7), 769-776.

Goessling, W., & North, T. E. (2014). Repairing quite swimmingly: advances in regenerative medicine using zebrafish. Disease Models & Mechanisms, 7(7), 769-776.

Goss, R. J., & Powel, R. S. (1985). Induction of deer antlers by transplanted periosteum I. Graft size and shape. Journal of Experimental Zoology, 235(3), 359-373.

Groeber, F., Kahlig, A., Loff, S., Walles, H., & Hansmann, J. (2013). A bioreactor system for interfacial culture and physiological perfusion of vascularized tissue equivalents. Biotechnology Journal, 8(3), 308-316.

Hadden, W. J., de Reuver, P. R., Brown, K., Mittal, A., Samra, J. S., & Hugh, T. J. (2016). Resection of colorectal liver metastases and extra-hepatic disease: a systematic review and proportional meta-analysis of survival outcomes. Hpb, 18(3), 209-220.

Haffter, P., Granato, M., Brand, M., Mullins, M. C., Hammerschmidt, M., Kane, D. A., ... & Nusslein-Volhard, C. (1996). The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development, 123(1), 1-36.

Haubner, B. J., Schneider, J., Schweigmann, U., Schuetz, T., Dichtl, W., Velik-Salchner, C., ... & Penninger, J. M. (2016). Functional recovery of a human neonatal heart after severe myocardial infarction. Circulation Research, 118(2), 216-221.

Humes, H. D., Krauss, J. C., Cieslinski, D. A., & Funke, A. J. (1996). Tubulogenesis from isolated single cells of adult mammalian kidney: clonal analysis with a recombinant retrovirus. American Journal of Physiology-Renal Physiology, 271(1), F42-F49.

Ifkovits, J. L., Tous, E., Minakawa, M., Morita, M., Robb, J. D., Koomalsingh, K. J., ... & Burdick, J. A. (2010). Injectable hydrogel properties influence infarct expansion and extent of postinfarction left ventricular remodeling in an ovine model. Proceedings of the National Academy of Sciences, 107(25), 11507-11512.

Ikeda, S., & Sadoshima, J. (2016). Regulation of myocardial cell growth and death by the Hippo pathway. Circulation Journal, CJ-16.

Inui, A., Sekine, H., Sano, K., Dobashi, I., Yoshida, A., Matsuura, K., ... & Shimizu, T. (2019). Generation of a large-scale vascular bed for the in vitro creation of three-dimensional cardiac tissue. Regenerative Therapy, 11, 316-323.

Kikuchi, K., Holdway, J. E., Werdich, A. A., Anderson, R. M., Fang, Y., Egnaczyk, G. F., ... & Poss, K. D. (2010). Primary contribution to zebrafish heart regeneration by gata4+ cardiomyocytes. Nature, 464(7288), 601-605.

Komae, H., Sekine, H., Dobashi, I., Matsuura, K., Ono, M., Okano, T., & Shimizu, T. (2017). Three‐dimensional functional human myocardial tissues fabricated from induced pluripotent stem cells. Journal of Tissue Engineering and Regenerative Medicine, 11(3), 926-935.

Körbling, M., & Estrov, Z. (2003). Adult stem cells for tissue repair—a new therapeutic concept?. New England Journal of Medicine, 349(6), 570-582.

Kuma, A., Hatano, M., Matsui, M., Yamamoto, A., Nakaya, H., Yoshimori, T., ... & Mizushima, N. (2004). The role of autophagy during the early neonatal starvation period. Nature, 432(7020), 1032-1036.

Laflamme, M. A., Chen, K. Y., Naumova, A. V., Muskheli, V., Fugate, J. A., Dupras, S. K., ... & Murry, C. E. (2007). Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nature Biotechnology, 25(9), 1015-1024.

Landa, N., Miller, L., Feinberg, M. S., Holbova, R., Shachar, M., Freeman, I., ... & Leor, J. (2008). CLINICAL PERSPECTIVE. Circulation, 117(11), 1388-1396.

Lee, K. Y., & Mooney, D. J. (2012). Alginate: properties and biomedical applications. Progress in Polymer Science, 37(1), 106-126.

Lee-Liu, D., Edwards-Faret, G., Tapia, V. S., & Larraín, J. (2013). Spinal cord regeneration: lessons for mammals from non-mammalian vertebrates. Genesis, 51(8), 529-544.

Li, Y., Meng, H., Liu, Y., & Lee, B. P. (2015). Fibrin gel as an injectable biodegradable scaffold and cell carrier for tissue engineering. The Scientific World Journal, 2015.

Lin, S. L., & Duffield, J. S. (2012). Macrophages in kidney injury and repair. Acta Nephrologica, 26(2), 45-57.

Lin, S. L., Li, B., Rao, S., Yeo, E. J., Hudson, T. E., Nowlin, B. T., ... & Duffield, J. S. (2010). Macrophage Wnt7b is critical for kidney repair and regeneration. Proceedings of the National Academy of Sciences, 107(9), 4194-4199.

Locker, J., Tian, J., Carver, R., Concas, D., Cossu, C., Ledda‐Columbano, G. M., & Columbano, A. (2003). A common set of immediate‐early response genes in liver regeneration and hyperplasia. Hepatology, 38(2), 314-325.

Lush, M. E., & Piotrowski, T. (2014). Sensory hair cell regeneration in the zebrafish lateral line. Developmental Dynamics, 243(10), 1187-1202.

Martin, P., & Parkhurst, S. M. (2004). Parallels between tissue repair and embryo morphogenesis. Development, 131(13), 3021-3034.

Martin, P., & Parkhurst, S. M. (2004). Parallels between tissue repair and embryo morphogenesis. Development, 131(13), 3021-3034.

Martins, A. M., Eng, G., Caridade, S. G., Mano, J. F., Reis, R. L., & Vunjak-Novakovic, G. (2014). Electrically conductive chitosan/carbon scaffolds for cardiac tissue engineering. Biomacromolecules, 15(2), 635-643.

McCampbell, K. K., & Wingert, R. A. (2014). New tides: using zebrafish to study renal regeneration. Translational Research, 163(2), 109-122.

Menasché, P., Alffieri, O., & Janssens, S. (2008). Myoblast autologous grafting in ischemic cardiomyolmthy (MAGIC). ACC Cardiosource Review Journal, 17(4), 42-49.

Monte, J. C., Sakurai, H., Bush, K. T., & Nigam, S. K. (2007). The developmental nephrome: systems biology in the developing kidney. Current Opinion in Nephrology and Hypertension, 16(1), 3-9.

Moshiri, A., Close, J., & Reh, T. A. (2004). Retinal stem cells and regeneration. International Journal of Developmental Biology, 48(8-9), 1003-1014.

Mukherjee, S., Reddy Venugopal, J., Ravichandran, R., Ramakrishna, S., & Raghunath, M. (2011). Evaluation of the biocompatibility of PLACL/collagen nanostructured matrices with cardiomyocytes as a model for the regeneration of infarcted myocardium. Advanced Functional Materials, 21(12), 2291-2300.

Murray, A. W., & Kirschner, M. W. (1989). Cyclin synthesis drives the early embryonic cell cycle. Nature, 339(6222), 275-280.

Pera, M. F., Reubinoff, B., & Trounson, A. (2000). Human embryonic stem cells. Journal of Cell Science, 113(1), 5-10.

Pok, S., Myers, J. D., Madihally, S. V., & Jacot, J. G. (2013). A multilayered scaffold of a chitosan and gelatin hydrogel supported by a PCL core for cardiac tissue engineering. Acta Biomaterialia, 9(3), 5630-5642.

Porrello, E. R., Mahmoud, A. I., Simpson, E., Hill, J. A., Richardson, J. A., Olson, E. N., & Sadek, H. A. (2011). Transient regenerative potential of the neonatal mouse heart. Science, 331(6020), 1078-1080.

Poss, K. D. (2010). Advances in understanding tissue regenerative capacity and mechanisms in animals. Nature Reviews Genetics, 11(10), 710-722.

Poss, K. D., Wilson, L. G., & Keating, M. T. (2002). Heart regeneration in zebrafish. Science, 298(5601), 2188-2190.

Ravi, S., Caves, J. M., Martinez, A. W., Xiao, J., Wen, J., Haller, C. A., ... & Chaikof, E. L. (2012). Effect of bone marrow-derived extracellular matrix on cardiac function after ischemic injury. Biomaterials, 33(31), 7736-7745.

Reddien, P. W., & Alvarado, A. S. (2004). Fundamentals of planarian regeneration. Annu. Rev. Cell Dev. Biol., 20, 725-757.

Rhodin, J. (1954). Correlation of ultrastructural organization and function in normal and experimentally changed proximal convoluted tubule cells of the mouse kidney. Doctoral Thesis., Karolinska Institutet, Stockholm, Aktiebolaget Godvil, 1.

Richardson, T. P., Peters, M. C., Ennett, A. B., & Mooney, D. J. (2001). Polymeric system for dual growth factor delivery. Nature Biotechnology, 19(11), 1029-1034.

Rink, J. C. (2013). Stem cell systems and regeneration in planaria. Development Genes and Evolution, 223(1-2), 67-84.

Sekine, H., Shimizu, T., Sakaguchi, K., Dobashi, I., Wada, M., Yamato, M., ... & Okano, T. (2013). In vitro fabrication of functional three-dimensional tissues with perfusable blood vessels. Nature Communications, 4(1), 1-10.

Senyo, S. E., Steinhauser, M. L., Pizzimenti, C. L., Yang, V. K., Cai, L., Wang, M., ... & Lee, R. T. (2013). Mammalian heart renewal by pre-existing cardiomyocytes. Nature, 493(7432), 433-436.

Serpooshan, V., Zhao, M., Metzler, S. A., Wei, K., Shah, P. B., Wang, A., ... & Ruiz-Lozano, P. (2013). The effect of bioengineered acellular collagen patch on cardiac remodeling and ventricular function post myocardial infarction. Biomaterials, 34(36), 9048-9055.

Seta, H., Matsuura, K., Sekine, H., Yamazaki, K., & Shimizu, T. (2017). Tubular cardiac tissues derived from human induced pluripotent stem cells generate pulse pressure in vivo. Scientific Reports, 7(1), 1-10.

Shiba, Y., Gomibuchi, T., Seto, T., Wada, Y., Ichimura, H., Tanaka, Y., ... & Ikeda, U. (2016). Allogeneic transplantation of iPS cell-derived cardiomyocytes regenerates primate hearts. Nature, 538(7625), 388-391.

Shimizu, T. (2014). Cell sheet-based tissue engineering for fabricating 3-dimensional heart tissues. Circulation Journal, CJ-14.

Shimizu, T., Sekine, H., Isoi, Y., Yamato, M., Kikuchi, A., & Okano, T. (2006). Long-term survival and growth of pulsatile myocardial tissue grafts engineered by the layering of cardiomyocyte sheets. Tissue Engineering, 12(3), 499-507.

Shimizu, T., Sekine, H., Yang, J., Isoi, Y., Yamato, M., Kikuchi, A., ... & Okano, T. (2006). Polysurgery of cell sheet grafts overcomes diffusion limits to produce thick, vascularized myocardial tissues. The FASEB Journal, 20(6), 708-710.

Song, K., Qiao, M., Liu, T., Jiang, B., Macedo, H. M., Ma, X., & Cui, Z. (2010). Preparation, fabrication and biocompatibility of novel injectable temperature-sensitive chitosan/glycerophosphate/collagen hydrogels. Journal of Materials Science: Materials in Medicine, 21(10), 2835-2842.

Soonpaa, M. H., Kim, K. K., Pajak, L. A. U. R. A., Franklin, M. I. C. H. A. E. L., & Field, L. J. (1996). Cardiomyocyte DNA synthesis and binucleation during murine development. American Journal of Physiology-Heart and Circulatory Physiology, 271(5), H2183-H2189.

Soonpaa, M. H., Kim, K. K., Pajak, L. A. U. R. A., Franklin, M. I. C. H. A. E. L., & Field, L. J. (1996). Cardiomyocyte DNA synthesis and binucleation during murine development. American Journal of Physiology-Heart and Circulatory Physiology, 271(5), H2183-H2189.

Stainier, D. Y., Fouquet, B., Chen, J. N., Warren, K. S., Weinstein, B. M., Meiler, S. E., ... & Fishman, M. C. (1996). Mutations affecting the formation and function of the cardiovascular system in the zebrafish embryo. Development, 123(1), 285-292.

Sui, R., Liao, X., Zhou, X., & Tan, Q. (2011). The current status of engineering myocardial tissue. Stem Cell Reviews and Reports, 7(1), 172-180.

Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., & Yamanaka, S. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131(5), 861-872.

Tal, T. L., Franzosa, J. A., & Tanguay, R. L. (2010). Molecular signaling networks that choreograph epimorphic fin regeneration in zebrafish–a mini-review. Gerontology, 56(2), 231-240.

Trembley, A. (1744). Mémoires, pour servir à l'histoire d'un genre de polypes d'eau douce, à bras en forme de cornes (Vol. 1). Chez Jean & Herman Verbeek.

Tsonis, P. A. (2000). Regeneration in vertebrates. Developmental Biology, 221(2), 273-284.

Tuch, B. E. (2006). Stem cells: a clinical update. Australian Family Physician, 35(9), 719.

Van Den Borne, S. W., Diez, J., Blankesteijn, W. M., Verjans, J., Hofstra, L., & Narula, J. (2010). Myocardial remodeling after infarction: the role of myofibroblasts. Nature Reviews Cardiology, 7(1), 30.

Varga, M., Fodor, E., & Vellai, T. (2015). Autophagy in zebrafish. Methods, 75, 172-180.

Vujic, A., Natarajan, N., & Lee, R. T. (2020, April). Molecular mechanisms of heart regeneration. In Seminars in cell & developmental biology (Vol. 100, pp. 20-28). Academic Press.

Vukadinovic-Nikolic, Z., Andrée, B., Dorfman, S. E., Pflaum, M., Horvath, T., Lux, M., ... & Hilfiker, A. (2014). Generation of bioartificial heart tissue by combining a three-dimensional gel-based cardiac construct with decellularized small intestinal submucosa. Tissue Engineering Part A, 20(3-4), 799-809.

Wagers, A. J., & Weissman, I. L. (2004). Plasticity of adult stem cells. Cell, 116(5), 639-648.

Wang, T., Wu, D. Q., Jiang, X. J., Zhang, X. Z., Li, X. Y., Zhang, J. F., ... & Huang, C. (2009). Novel thermosensitive hydrogel injection inhibits post‐infarct ventricle remodelling. European Journal of Heart Failure, 11(1), 14-19.

Whelan, R. S., Kaplinskiy, V., & Kitsis, R. N. (2010). Cell death in the pathogenesis of heart disease: mechanisms and significance. Annual Review of Physiology, 72, 19-44.

Wollert, K. C., Meyer, G. P., Lotz, J., Lichtenberg, S. R., Lippolt, P., Breidenbach, C., ... & Drexler, H. (2004). Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. The Lancet, 364(9429), 141-148.

Yildirimer, L., Thanh, N. T., & Seifalian, A. M. (2012). Skin regeneration scaffolds: a multimodal bottom-up approach. Trends in Biotechnology, 30(12), 638-648.

Yoon, S. J., Fang, Y. H., Lim, C. H., Kim, B. S., Son, H. S., Park, Y., & Sun, K. (2009). Regeneration of ischemic heart using hyaluronic acid‐based injectable hydrogel. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 91(1), 163-171.

Young, H. E., & Black Jr, A. C. (2004). Adult stem cells. The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology: An Official Publication of the American Association of Anatomists, 276(1), 75-102.

Zakrzewski, W., Dobrzyński, M., Szymonowicz, M., & Rybak, Z. (2019). Stem cells: past, present, and future. Stem Cell Research & Therapy, 10(1), 1-22.

Zhang, J., Liu, J., Huang, Y., Chang, J. Y., Liu, L., McKeehan, W. L., ... & Wang, F. (2012). FRS2α-mediated FGF signals suppress premature differentiation of cardiac stem cells through regulating autophagy activity. Circulation Research, 110(4), e29-e39.

Zhou, J., Chen, J., Sun, H., Qiu, X., Mou, Y., Liu, Z., ... & Wang, C. (2014). Engineering the heart: evaluation of conductive nanomaterials for improving implant integration and cardiac function. Scientific Reports, 4(1), 1-11.

Downloads

Published

2021-08-03

How to Cite

Naseem, S., Noor-Us-Saba, Sharif, S., Yasir, M., Noor, Z., & Hanif, S. (2021). Organ regeneration. Biological and Clinical Sciences Research Journal, 2021(1). https://doi.org/10.54112/bcsrj.v2021i1.77

Issue

Section

Review Articles