GENETIC FACTORS ASSOCIATED WITH MUTATIONS OF MOLECULAR MECHANISM AND DRUG RESISTANCE IN MYCOBACTERIUM TUBERCULOSIS

Authors

  • F Arif Institute of Molecular Biology & Biotechnology, University of Lahore, Lahore, Pakistan
  • T Tahir Institute of Molecular Biology & Biotechnology, University of Lahore, Lahore, Pakistan
  • S Suhail Institute of Molecular Biology & Biotechnology, University of Lahore, Lahore, Pakistan
  • R Anees Institute of Molecular Biology & Biotechnology, University of Lahore, Lahore, Pakistan
  • I Nadeem Institute of Molecular Biology & Biotechnology, University of Lahore, Lahore, Pakistan
  • MM Hafeez Institute of Molecular Biology & Biotechnology, University of Lahore, Lahore, Pakistan

DOI:

https://doi.org/10.54112/bcsrj.v2021i1.72

Keywords:

Mycobacterium tuberculosis, drug, anti-TB agents, genetic factors, mutations

Abstract

Mycobacterium tuberculosis shows drug resistance patterns (drug-resistance tuberculosis DR-TB) for strains that are induced with high mortality rates. Because this acid-fast bacterium resists extensively against drugs and masks their effects to control the disease. However, these chromosomal mutations and genetic factors lead towards recent anti-TB drug discoveries. Anti-TB regimens are dearth to control this pandemic problem due to the high prevalence of this disease. These situations are remarkably given new ray to discover newer drugs that target such bacilli strains genetic factors and mutations. Also, it provides molecular updates to the resistance mechanism of mutations and genetic factors as a basic target then screened-out recent new anti-TB agents to limit the MDR-TB.

Downloads

Download data is not yet available.

References

Almeida, D., Ioerger, T., Tyagi, S., Li, S.-Y., Mdluli, K., Andries, K., Grosset, J., Sacchettini, J., and Nuermberger, E. (2016). Mutations in pepQ Confer Low-Level Resistance to Bedaquiline and Clofazimine in Mycobacterium tuberculosis. Antimicrobial agents and chemotherapy, 60, 4590-4599.

Almeida Da Silva, P. E., and Palomino, J. C. (2011). Molecular basis and mechanisms of drug resistance in Mycobacterium tuberculosis: classical and new drugs. Journal of Antimicrobial Chemotherapy 66, 1417-1430.

Bartek, I. L., Woolhiser, L. K., Baughn, A. D., Basaraba, R. J., Jacobs, W. R., Lenaerts, A. J., and Voskuil, M. I. (2014). Mycobacterium tuberculosis Lsr2 is a global transcriptional regulator required for adaptation to changing oxygen levels and virulence. MBio, 5, e01106-14.

Beena, and Rawat, D. S. (2013). Antituberculosis Drug Research: A Critical Overview. 33, 693-764.

Bhatt, R., Chopra, K., and Vashisht, R. (2019). Impact of integrated psycho-socio-economic support on treatment outcome in drug resistant tuberculosis – A retrospective cohort study. Indian Journal of Tuberculosis 66, 105-110.

Burian, J., Ramón-García, S., Howes, C. G., and Thompson, C. J. (2012). WhiB7, a transcriptional activator that coordinates physiology with intrinsic drug resistance in Mycobacterium tuberculosis. Expert Review of Anti-infective Therapy 10, 1037-1047.

Cáceres, N. E., Harris, N. B., Wellehan, J. F., Feng, Z., Kapur, V., and Barletta, R. G. (1997). Overexpression of the D-alanine racemase gene confers resistance to D-cycloserine in Mycobacterium smegmatis. 179, 5046-5055.

Campbell, E. A., Korzheva, N., Mustaev, A., Murakami, K., Nair, S., Goldfarb, A., and Darst, S. A. (2001). Structural Mechanism for Rifampicin Inhibition of Bacterial RNA Polymerase. Cell 104, 901-912.

Changtam, C., Hongmanee, P., and Suksamrarn, A. (2010). Isoxazole analogs of curcuminoids with highly potent multidrug-resistant antimycobacterial activity. European Journal of Medicinal Chemistry 45, 4446-4457.

Dookie, N., Rambaran, S., Padayatchi, N., Mahomed, S., and Naidoo, K. (2018). Evolution of drug resistance in Mycobacterium tuberculosis: a review on the molecular determinants of resistance and implications for personalized care. Journal of Antimicrobial Chemotherapy 73, 1138-1151.

Feuerriegel, S., Köser, C. U., Baù, D., Rüsch-Gerdes, S., Summers, D. K., Archer, J. A. C., Marti-Renom, M. A., and Niemann, S. (2011). Impact of Fgd1 and ddn diversity in Mycobacterium tuberculosis complex on in vitro susceptibility to PA-824. Antimicrobial Agents and Chemotherapy, 55, 5718-5722.

Granich, R. J. T. L. (2018). Is the global tuberculosis control strategy too big to fail? 392, 2165.

Grobusch, M. P., and Kapata, N. J. T. L. I. D. (2018). Global burden of tuberculosis: where we are and what to do. 18, 1291-1293.

Gygli, S. M., Borrell, S., Trauner, A., and Gagneux, S. (2017). Antimicrobial resistance in Mycobacterium tuberculosis: mechanistic and evolutionary perspectives. FEMS Microbiology Reviews 41, 354-373.

Kaplan, S. R., Topal, J., Sosa, L., Malinis, M., Huttner, A., Malhotra, A., and Friedland, G. (2018). A patient with central nervous system tuberculomas and a history of disseminated multi-drug-resistant tuberculosis. Journal of Clinical Tuberculosis and Other Mycobacterial Diseases 10, 9-16.

Kashyap, A., Singh, P. K., and Silakari, O. (2018). Mechanistic investigation of resistance via drug-inactivating enzymes in Mycobacterium tuberculosis. Drug Metabolism Reviews 50, 448-465.

Koul, A., Arnoult, E., Lounis, N., Guillemont, J., and Andries, K. J. N. (2011). The challenge of new drug discovery for tuberculosis. 469, 483-490.

Kumar, K., Awasthi, D., Lee, S.-Y., Zanardi, I., Ruzsicska, B., Knudson, S., Tonge, P. J., Slayden, R. A., and Ojima, I. (2011). Novel Trisubstituted Benzimidazoles, Targeting Mtb FtsZ, as a New Class of Antitubercular Agents. Journal of Medicinal Chemistry 54, 374-381.

Lall, N., Meyer, J. J. M., Wang, Y., Bapela, N. B., van Rensburg, C. E. J., Fourie, B., and Franzblau, S. G. (2005). Characterization of Intracellular Activity of Antitubercular Constituents the Roots of Euclea natalensis. Pharmaceutical Biology 43, 353-357.

Lin, S.-Y. G., Rodwell, T. C., Victor, T. C., Rider, E. C., Pham, L., Catanzaro, A., and Desmond, E. P. (2014). Pyrosequencing for Rapid Detection of Extensively Drug-Resistant Mycobacterium tuberculosis in Clinical Isolates and Clinical Specimens. 52, 475-482.

Liu, X., Chen, C., He, W., Huang, P., Liu, M., Wang, Q., Guo, H., Bolla, K., Lu, Y., Song, F., Dai, H., Liu, M., and Zhang, L. (2012a). Exploring anti-TB leads from natural products library originated from marine microbes and medicinal plants. Antonie van Leeuwenhoek 102, 447-461.

Liu, X., Chen, C., He, W., Huang, P., Liu, M., Wang, Q., Guo, H., Bolla, K., Lu, Y., and Song, F. J. A. v. L. (2012b). Exploring anti-TB leads from natural products library originated from marine microbes and medicinal plants. 102, 447-461.

Lomovskaya, O., and Bostian, K. A. (2006). Practical applications and feasibility of efflux pump inhibitors in the clinic—A vision for applied use. Biochemical Pharmacology 71, 910-918.

Lynch, M. (2011). The Lower Bound to the Evolution of Mutation Rates. Genome Biology and Evolution 3, 1107-1118.

Mathys, V., Wintjens, R., Lefevre, P., Bertout, J., Singhal, A., Kiass, M., Kurepina, N., Wang, X.-M., Mathema, B., Baulard, A., Kreiswirth, B. N., and Bifani, P. (2009). Molecular Genetics of para-Aminosalicylic Acid Resistance in Clinical Isolates and Spontaneous Mutants of Mycobacterium tuberculosis. 53, 2100-2109.

Mitchison, D. A., and Davies, G. R. (2008a). Assessment of the Efficacy of New Anti-Tuberculosis Drugs. Open Infect Dis J 2, 59-76.

Mitchison, D. A., and Davies, G. R. J. T. o. i. d. j. (2008b). Assessment of the efficacy of new anti-tuberculosis drugs. 2, 59.

Morris, R. P., Nguyen, L., Gatfield, J., Visconti, K., Nguyen, K., Schnappinger, D., Ehrt, S., Liu, Y., Heifets, L., Pieters, J., Schoolnik, G., and Thompson, C. J. (2005). Ancestral antibiotic resistance in Mycobacterium tuberculosis. Proceedings of the National Academy of Sciences, 102, 12200-12205.

Nasiruddin, M., Neyaz, M. K., and Das, S. (2017). Nanotechnology-Based Approach in Tuberculosis Treatment. Tuberculosis Research and Treatment 2017, 4920209.

Nguyen, L., and Pieters, J. (2009). Mycobacterial Subversion of Chemotherapeutic Reagents and Host Defense Tactics: Challenges in Tuberculosis Drug Development. 49, 427-453.

Oh, T.-J., Daniel, J., Kim, H.-J., Sirakova, T. D., and Kolattukudy, P. E. (2006). Identification and Characterization of Rv3281 as a Novel Subunit of a Biotin-dependent Acyl-CoA Carboxylase in Mycobacterium tuberculosis H37Rv. Journal of Biological Chemistry 281, 3899-3908.

Padayatchi, N., Naidu, N., Friedland, G., Naidoo, K., Conradie, F., Naidoo, K., and O’Donnell, M. R. J. I. J. o. I. D. (2017). Turning the tide against tuberculosis. 56, 6-9.

Palencia, A., Li, X., Bu, W., Choi, W., Ding, C. Z., Easom, E. E., Feng, L., Hernandez, V., Houston, P., Liu, L., Meewan, M., Mohan, M., Rock, F. L., Sexton, H., Zhang, S., Zhou, Y., Wan, B., Wang, Y., Franzblau, S. G., Woolhiser, L., Gruppo, V., Lenaerts, A. J., O'Malley, T., Parish, T., Cooper, C. B., Waters, M. G., Ma, Z., Ioerger, T. R., Sacchettini, J. C., Rullas, J., Angulo-Barturen, I., Pérez-Herrán, E., Mendoza, A., Barros, D., Cusack, S., Plattner, J. J., and Alley, M. R. K. (2016). Discovery of novel oral protein synthesis inhibitors of Mycobacterium tuberculosis that target leucyl-tRNA synthetase." Antimicrobial Agents and Chemotherapy, 60, 6271-6280.

Palomino, J. C., and Martin, A. (2013). TMC207 becomes bedaquiline, a new anti-TB drug. 8, 1071-1080.

Palomino, J. C., and Martin, A. (2014). Drug Resistance Mechanisms in Mycobacterium tuberculosis. 3, 317-340.

Pourakbari, B., Mamishi, S., Mohammadzadeh, M., and Mahmoudi, S. (2016). First-Line Anti-Tubercular Drug Resistance of Mycobacterium tuberculosis in IRAN: A Systematic Review. 7.

Richter, E., Rüsch-Gerdes, S., and Hillemann, D. (2007). First linezolid-resistant clinical isolates of Mycobacterium tuberculosis. Antimicrobial agents and chemotherapy, 51, 1534-1536.

Rustomjee, R., Lienhardt, C., Kanyok, T., Davies, G. R., Levin, J., Mthiyane, T., Reddy, C., Sturm, A. W., Sirgel, F. A., Allen, J., Coleman, D. J., Fourie, B., Mitchison, D. A., and Gatifloxacin for, T. B. s. t. (2008). A Phase II study of the sterilising activities of ofloxacin, gatifloxacin and moxifloxacin in pulmonary tuberculosis. The International Journal of Tuberculosis and Lung Disease 12, 128-138.

Santhosh, R. S., and Suriyanarayanan, B. J. P. m. (2014). Plants: a source for new antimycobacterial drugs. 80, 9-21.

Siroy, A., Mailaender, C., Harder, D., Koerber, S., Wolschendorf, F., Danilchanka, O., Wang, Y., Heinz, C., and Niederweis, M. (2008). Rv1698 of Mycobacterium tuberculosis Represents a New Class of Channel-forming Outer Membrane Proteins. Journal of Biological Chemistry 283, 17827-17837.

Sizemore, C. F., Schleif, A. C., Bernstein, J. B., and Heilman, C. A. (2012). The role of biomedical research in global tuberculosis control: gaps and challenges. Emerging Microbes & Infections 1, 1-6.

Sloan, j.D., R. Davies, G., and H. Khoo, S. (2013). New Drugs and Treatment Regimens. Current Respiratory Medicine Reviews 9, 200-210.

Sotgiu, G., Goletti, D., and Matteelli, A. (2019). Global tuberculosis prevention: should we start from the beginning? 54, 1901394.

Swain, S. S., Paidesetty, S. K., Dehury, B., Das, M., Vedithi, S. C., and Padhy, R. N. (2020a). Computer-aided synthesis of dapsone-phytochemical conjugates against dapsone-resistant Mycobacterium leprae. Scientific Reports 10, 6839.

Swain, S. S., Paidesetty, S. K., Padhy, R. N., and Hussain, T. (2020b). Isoniazid–phytochemical conjugation: A new approach for potent and less toxic anti-TB drug development. 96, 714-730.

Swain, S. S., Paidesetty, S. K., Padhy, R. N., and Singh, P. K. J. I. J. P. E. R. (2017). Computational approach for locating effective cyanobacterial compounds against Mycobacterium tuberculosis. 51, 1-10.

Swain, S. S., Sharma, D., Hussain, T., and Pati, S. (2020c). Molecular mechanisms of underlying genetic factors and associated mutations for drug resistance in Mycobacterium tuberculosis. Emerging Microbes & Infections 9, 1651-1663.

Swain, S. S., Sharma, D., Hussain, T., and Pati, S. (2020d). Molecular mechanisms of underlying genetic factors and associated mutations for drug resistance in Mycobacterium tuberculosis. Emerg Microbes Infect 9, 1651-1663.

Takate, S. J., Shinde, A. D., Karale, B. K., Akolkar, H., Nawale, L., Sarkar, D., Mhaske, P. C. J. B., and letters, m. c. (2019). Thiazolyl-pyrazole derivatives as potential antimycobacterial agents. 29, 1199-1202.

Timmins, G. S., and Deretic, V. (2006). Mechanisms of action of isoniazid. 62, 1220-1227.

Tiwari, D., Park, S. W., Essawy, M. M., Dawadi, S., Mason, A., Nandakumar, M., Zimmerman, M., Mina, M., Ho, H. P., Engelhart, C. A., Ioerger, T., Sacchettini, J. C., Rhee, K., Ehrt, S., Aldrich, C. C., Dartois, V., and Schnappinger, D. (2018). Targeting protein biotinylation enhances tuberculosis chemotherapy. 10, eaal1803.

Uc-Cachón, A. H., Borges-Argáez, R., Said-Fernández, S., Vargas-Villarreal, J., González-Salazar, F., Méndez-González, M., Cáceres-Farfán, M., and Molina-Salinas, G. M. (2014). Naphthoquinones isolated from Diospyros anisandra exhibit potent activity against pan-resistant first-line drugs Mycobacterium tuberculosis strains. Pulmonary Pharmacology & Therapeutics 27, 114-120.

Viveiros, M., Martins, M., Rodrigues, L., Machado, D., Couto, I., Ainsa, J., and Amaral, L. (2012). Inhibitors of mycobacterial efflux pumps as potential boosters for anti-tubercular drugs. Expert Review of Anti-infective Therapy 10, 983-998.

Xu, Y., Jia, H., Huang, H., Sun, Z., and Zhang, Z. (2015). Mutations found in embCAB, embR, and ubiA genes of ethambutol-sensitive and-resistant Mycobacterium tuberculosis clinical isolates from China. BioMed Research International 2015, 951706.

Xu, Z.-Q., Barrow, W. W., Suling, W. J., Westbrook, L., Barrow, E., Lin, Y.-M., and Flavin, M. T. (2004). Anti-HIV natural product (+)-calanolide A is active against both drug-susceptible and drug-resistant strains of Mycobacterium tuberculosis. Bioorganic & Medicinal Chemistry 12, 1199-1207.

Yano, T., Kassovska-Bratinova, S., Teh, J. S., Winkler, J., Sullivan, K., Isaacs, A., Schechter, N. M., and Rubin, H. (2011). Reduction of Clofazimine by Mycobacterial Type 2 NADH:Quinone Oxidoreductase: A pathway for the generation of bactericidal levels of reactive oxygen species. Journal of Biological Chemistry 286, 10276-10287.

Zhang, S., Chen, J., Shi, W., Liu, W., Zhang, W., and Zhang, Y. (2013). Mutations in panD encoding aspartate decarboxylase are associated with pyrazinamide resistance in Mycobacterium tuberculosis. Emerging Microbes & Infections 2, 1-5.

Zhang, Y., Yew, W. J. T. I. J. o. T., and Disease, L. (2015). Mechanisms of drug resistance in Mycobacterium tuberculosis: update 2015. 19, 1276-1289.

Zhang, Y., and Yew, W. W. (2015). Mechanisms of drug resistance in Mycobacterium tuberculosis: update 2015. The International Journal of Tuberculosis and Lung Disease 19, 1276-1289.

Zhao, F., Wang, X.-D., Erber, L. N., Luo, M., Guo, A.-z., Yang, S.-s., Gu, J., Turman, B. J., Gao, Y.-r., Li, D.-f., Cui, Z.-q., Zhang, Z.-p., Bi, L.-j., Baughn, A. D., Zhang, X.-E., and Deng, J.-Y. (2014). Binding pocket alterations in dihydrofolate synthase confer resistance to para-aminosalicylic acid in clinical isolates of Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 58, 1479-1487.

Downloads

Published

2021-06-19

How to Cite

Arif, F., Tahir, T., Suhail, S., Anees, R., Nadeem, I., & Hafeez, M. (2021). GENETIC FACTORS ASSOCIATED WITH MUTATIONS OF MOLECULAR MECHANISM AND DRUG RESISTANCE IN MYCOBACTERIUM TUBERCULOSIS. Biological and Clinical Sciences Research Journal, 2021(1). https://doi.org/10.54112/bcsrj.v2021i1.72

Issue

Section

Review Articles

Most read articles by the same author(s)

1 2 > >>