APPLICATIONS OF EPIGENETICS IN FORENSIC INVESTIGATIONS: A BRIEF REVIEW

Authors

  • RA Ullah Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore Pakistan
  • A Ali Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore Pakistan
  • N Hussain Centre for Applied Molecular Biology, University the Punjab Lahore, Lahore Pakistan
  • A Malik Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore Pakistan

DOI:

https://doi.org/10.54112/bcsrj.v2021i1.58

Keywords:

epigenetics, forensic, methylation, chromatin, acetylation

Abstract

Forensic science is a discipline that has the capacity to be merged with every promise to offer a solution to a criminal investigation to help the legal system. Epigenetics is a branch of genetics that deals with the study of environmental interaction with the genome. The emerging field of forensic epigenetics has a variety of applications in criminal investigations. It provides an addictive tool to solve criminal activity-related issues. In this review, we have showcased the brief use of epigenetics to sort out forensic-related issues and help the legal system. We have briefly taken a snapshot of genetics, epigenetics, and application of epigenetics in forensic science that how it could offer solutions to queries of forensic nature. Also, potential future developments in the field and their probable impact have been anticipated. It has many potential applications which are still to be explored. It complements forensic science at many potential levels.

Downloads

Download data is not yet available.

References

Anway, M. D., Cupp, A. S., Uzumcu, M., & Skinner, M. K. (2005). Epigenetic transgenerational actions of endocrine disruptors and male fertility. science, 308(5727), 1466-1469.

Bird, A. (2007). Perceptions of epigenetics. Nature, 447(7143), 396.

Breitling, L. P., Yang, R., Korn, B., Burwinkel, B., & Brenner, H. (2011). Tobacco-smoking-related differential DNA methylation: 27K discovery and replication. The American Journal of Human Genetics, 88(4), 450-457.

Chong, S., & Whitelaw, E. (2004). Epigenetic germline inheritance. Current Opinion in Genetics & Development, 14(6), 692-696.

Du, Q., Zhu, G., Fu, G., Zhang, X., Fu, L., Li, S., & Cong, B. (2015). A genome-wide scan of DNA methylation markers for distinguishing monozygotic twins. Twin Research and Human Genetics, 18(6), 670-679.

Eckhardt, F., Lewin, J., Cortese, R., Rakyan, V. K., Attwood, J., Burger, M., ... & Beck, S. (2006). DNA methylation profiling of human chromosomes 6, 20 and 22. Nature genetics, 38(12), 1378-1385.

EDU, (2015). Crime Scene Investigator, Archived from the original on 6 September 2015.

Eurostat (2017). Tobacco consumption statistics. explained/index.php/Tobacco_consumption_statistics.http://ec.europa.eu/eurostat/statistics.

Fraga, M. F., Ballestar, E., Paz, M. F., Ropero, S., Setien, F., Ballestar, M. L., ... & Esteller, M. (2005). Epigenetic differences arise during the lifetime of monozygotic twins. Proceedings of the National Academy of Sciences, 102(30), 10604-10609.

Freire-Aradas, A., Phillips, C., & Lareu, M. V. (2017). Forensic individual age estimation with DNA: from initial approaches to methylation tests. Forensic Science Review, 29(2).

Frumkin, D., Wasserstrom, A., Budowle, B., & Davidson, A. (2011). DNA methylation-based forensic tissue identification. Forensic Science International: Genetics, 5(5), 517-524.

Heyn, H., Moran, S., Hernando-Herraez, I., Sayols, S., Gomez, A., Sandoval, J., & Esteller, M. (2013). DNA methylation contributes to natural human variation. Genome research, 23(9), 1363-1372.

Holtkötter, H., Beyer, V., Schwender, K., Glaub, A., Johann, K. S., Schürenkamp, M., ... & EUROFORGEN-NoE Consortium. (2017). Independent validation of body fluid-specific CpG markers and construction of a robust multiplex assay. Forensic Science International: Genetics, 29, 261-268.

Hong, E. J., West, A. E., & Greenberg, M. E. (2005). Transcriptional control of cognitive development. Current opinion in neurobiology, 15(1), 21-28.

Horvath, S. (2013). DNA methylation age of human tissues and cell types. Genome Biology, 14(10), 1-20.

Houseman, E. A., Accomando, W. P., Koestler, D. C., Christensen, B. C., Marsit, C. J., Nelson, H. H., ... & Kelsey, K. T. (2012). DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinformatics, 13(1), 1-16.

Huang, J., Okuka, M., Lu, W., Tsibris, J. C., McLean, M. P., Keefe, D. L., & Liu, L. (2013). Telomere shortening and DNA damage of embryonic stem cells induced by cigarette smoke. Reproductive Toxicology, 35, 89-95.

Jeggo, P. A., & Holliday, R. (1986). Azacytidine-induced reactivation of a DNA repair gene in Chinese hamster ovary cells. Molecular and Cellular Biology, 6(8), 2944-2949.

Jobling, M. A., & Gill, P. (2004). Encoded evidence: DNA in forensic analysis. Nature Reviews Genetics, 5(10), 739-751.

Kader, F. and Ghai, M. (2015). DNA methylation and application in forensic sciences. Forensic Sci. Int. 249:pp.255-265.

Kaminsky, Z., & Petronis, A. (2009). Methylation SNaPshot: a method for the quantification of site-specific DNA methylation levels. In DNA Methylation (pp. 241-255). Humana Press.

Kayser, M. (2015). Forensic DNA phenotyping: predicting human appearance from crime scene material for investigative purposes. Forensic Science International: Genetics, 18, 33-48.

Kayser, M., & De Knijff, P. (2011). Improving human forensics through advances in genetics, genomics and molecular biology. Nature Reviews Genetics, 12(3), 179-192.

Klose, R. J., & Bird, A. P. (2006). Genomic DNA methylation: the mark and its mediators. Trends in Biochemical Sciences, 31(2), 89-97.

Kovatsi, L., Vidaki, A., & Fragou, D. (2015). Syndercombe Court D. Epigenetic fingerprint. Personalised epigenetics. 1st ed. USA: Elsevier, 221-43.

Kunkel, T. A. (2004). DNA replication fidelity. Journal of Biological Chemistry. 279:16895–16898.

Laird, C. D., Pleasant, N. D., Clark, A. D., Sneeden, J. L., Hassan, K. A., Manley, N. C., ... & Stöger, R. (2004). Hairpin-bisulfite PCR: assessing epigenetic methylation patterns on complementary strands of individual DNA molecules. Proceedings of the National Academy of Sciences, 101(1), 204-209.

Lee, H. Y., Lee, S. D., & Shin, K. J. (2016). Forensic DNA methylation profiling from evidence material for investigative leads. BMB Reports, 49(7), 359.

Li, C., Zhao, S., Zhang, N., Zhang, S., & Hou, Y. (2013). Differences of DNA methylation profiles between monozygotic twins’ blood samples. Molecular Biology Reports, 40(9), 5275-5280.

Lindenbergh, A., de Pagter, M., Ramdayal, G., Visser, M., Zubakov, D., Kayser, M., & Sijen, T. (2012). A multiplex (m) RNA-profiling system for the forensic identification of body fluids and contact traces. Forensic Science International: Genetics, 6(5), 565-577.

Linnér, R. K., Marioni, R. E., Rietveld, C. A., Simpkin, A. J., Davies, N. M., Watanabe, K., ... & Benjamin, D. J. (2017). An epigenome-wide association study meta-analysis of educational attainment. Molecular Psychiatry, 22(12), 1680-1690.

Madi, T., Balamurugan, K., Bombardi, R., Duncan, G., & McCord, B. (2012). The determination of tissue‐specific DNA methylation patterns in forensic biofluids using bisulfite modification and pyrosequencing. Electrophoresis, 33(12), 1736-1745.

Naito, E., Dewa, K., Yamanouchi, H., Takagi, S., & Kominami, R. (1993). Sex determination using the hypomethylation of a human macro-satellite DXZ4 in female cells. Nucleic acids research, 21(10), 2533.

Olkhov‐Mitsel, E., & Bapat, B. (2012). Strategies for discovery and validation of methylated and hydroxymethylated DNA biomarkers. Cancer medicine, 1(2), 237-260.

Phillips, C. (2015). Forensic genetic analysis of bio-geographical ancestry. Forensic Science International: Genetics, 18, 49-65.

Riggs, A. D., Suzuki, H., & Bourgeois, S. (1970). lac repressor-operator interaction: I. Equilibrium studies. Journal of Molecular Biology, 48(1), 67-83.

Rogakou, E. P., Boon, C., Redon, C., & Bonner, W. M. (1999). Megabase chromatin domains involved in DNA double-strand breaks in vivo. Journal of Cell Biology, 146(5), 905-916.

Russo, V. E., Martienssen, R. A., & Riggs, A. D. (1996). Epigenetic mechanisms of gene regulation. Cold Spring Harbor Laboratory Press.

Satta, R., Maloku, E., Zhubi, A., Pibiri, F., Hajos, M., Costa, E., & Guidotti, A. (2008). Nicotine decreases DNA methyltransferase 1 expression and glutamic acid decarboxylase 67 promoter methylation in GABAergic interneurons. Proceedings of the National Academy of Sciences, 105(42), 16356-16361.

Sauer, E., Reinke, A. K., & Courts, C. (2016). Differentiation of five body fluids from forensic samples by expression analysis of four microRNAs using quantitative PCR. Forensic Science International: Genetics, 22, 89-99.

Sijen, T. (2015). Molecular approaches for forensic cell type identification: on mRNA, miRNA, DNA methylation and microbial markers. Forensic Science International: Genetics, 18, 21-32.

Silva, A. J., Ward, K., & White, R. (1993). Mosaic methylation in clonal tissue. Developmental Biology, 156(2), 391-398.

Song, F., Mahmood, S., Ghosh, S., Liang, P., Smiraglia, D. J., Nagase, H., & Held, W. A. (2009). Tissue specific differentially methylated regions (TDMR): Changes in DNA methylation during development. Genomics, 93(2), 130-139.

Van Dongen, J., Nivard, M. G., Willemsen, G., Hottenga, J. J., Helmer, Q., Dolan, C. V., ... & Boomsma, D. I. (2016). Genetic and environmental influences interact with age and sex in shaping the human methylome. Nature Communications, 7(1), 1-13.

Varley, K. E., Gertz, J., Bowling, K. M., Parker, S. L., Reddy, T. E., Pauli-Behn, F., ... & Myers, R. M. (2013). Dynamic DNA methylation across diverse human cell lines and tissues. Genome Research, 23(3), 555-567.

Vidaki, A., & Kayser, M. (2017). From forensic epigenetics to forensic epigenomics: broadening DNA investigative intelligence. Genome biology, 18(1), 1-13.

Vidaki, A., & Kayser, M. (2018). Recent progress, methods and perspectives in forensic epigenetics. Forensic Science International: Genetics, 37, 180-195.

Vidaki, A., Daniel, B., & Court, D. S. (2013). Forensic DNA methylation profiling—potential opportunities and challenges. Forensic Science International: Genetics, 7(5), 499-507.

Vidaki, A., Giangasparo, F., & Syndercombe Court, D. (2016). Discovery of potential DNA methylation markers for forensic tissue identification using bisulphite pyrosequencing. Electrophoresis, 37(21), 2767-2779.

Vidaki, A., López, C. D., Carnero-Montoro, E., Ralf, A., Ward, K., Spector, T., & Kayser, M. (2017). Epigenetic discrimination of identical twins from blood under the forensic scenario. Forensic Science International: Genetics, 31, 67-80.

Waddington, C.H. (1957). (Allen & Unwin, London, 1957). The Strategy of the Genes. George Allen & Unwin, Ltd.

Weaver, I. C., Cervoni, N., Champagne, F. A., D'Alessio, A. C., Sharma, S., Seckl, J. R., ... & Meaney, M. J. (2004). Epigenetic programming by maternal behavior. Nature Neuroscience, 7(8), 847-854.

Weber-Lehmann, J., Schilling, E., Gradl, G., Richter, D. C., Wiehler, J., & Rolf, B. (2014). Finding the needle in the haystack: differentiating “identical” twins in paternity testing and forensics by ultra-deep next generation sequencing. Forensic Science International: Genetics, 9, 42-46.

Wong, A. H., Gottesman, I. I., & Petronis, A. (2005). Phenotypic differences in genetically identical organisms: the epigenetic perspective. Human Molecular Genetics, 14(suppl_1), R11-R18.

Wong, A. H., Gottesman, I. I., & Petronis, A. (2005). Phenotypic differences in genetically identical organisms: the epigenetic perspective. Human molecular genetics, 14(suppl_1), R11-R18.

Yet, I., Tsai, P. C., Castillo-Fernandez, J. E., Carnero-Montoro, E., & Bell, J. T. (2016). Genetic and environmental impacts on DNA methylation levels in twins. Epigenomics, 8(1), 105-117.

Zbieć-Piekarska, R., Spólnicka, M., Kupiec, T., Parys-Proszek, A., Makowska, Ż., Pałeczka, A., ... & Branicki, W. (2015). Development of a forensically useful age prediction method based on DNA methylation analysis. Forensic Science International: Genetics, 17, 173-179.

Zhang, B., Zhou, Y., Lin, N., Lowdon, R. F., Hong, C., Nagarajan, R. P., ... & Wang, T. (2013). Functional DNA methylation differences between tissues, cell types, and across individuals discovered using the M&M algorithm. Genome Research, 23(9), 1522-1540.

Zilbauer, M., Rayner, T. F., Clark, C., Coffey, A. J., Joyce, C. J., Palta, P., ... & Smith, K. G. (2013). Genome-wide methylation analyses of primary human leukocyte subsets identifies functionally important cell-type–specific hypomethylated regions. Blood, 122(25), e52-e60.

Zolotarenko, A. D., Chekalin, E. V., & Bruskin, S. A. (2019). Modern Molecular Genetic Methods for Age Estimation in Forensics. Russian Journal of Genetics, 55(12), 1460-1471.

Downloads

Published

2021-03-12

How to Cite

Ullah, R., Ali, A., Hussain, N., & Malik, A. (2021). APPLICATIONS OF EPIGENETICS IN FORENSIC INVESTIGATIONS: A BRIEF REVIEW. Biological and Clinical Sciences Research Journal, 2021(1). https://doi.org/10.54112/bcsrj.v2021i1.58

Issue

Section

Review Articles

Most read articles by the same author(s)

1 2 3 4 5 6 7 8 9 > >>