GENETIC MODIFICATION FOR SALT AND DROUGHT TOLERANCE IN PLANTS THROUGH SODERF3

Authors

  • M Ali Institute of Molecular Biology & Biotechnology, University of Lahore, Lahore, Pakistan
  • F Rafique Institute of Molecular Biology & Biotechnology, University of Lahore, Lahore, Pakistan
  • Q Ali Institute of Biotechnology and Molecular Biology, The University of Lahore, Lahore
  • A Malik Institute of Molecular Biology & Biotechnology, University of Lahore, Lahore, Pakistan

DOI:

https://doi.org/10.54112/bcsrj.v2020i1.22

Keywords:

salt, drought, SodERF3, sugarcane, genetic engineering, transgenic plants

Abstract

Plants constitute the major part of the ecosystem and maintain balance through their different roles in the stability of the environment. As plants have an impact over environment; in the same manner environment interacts with plants. These interactions bring some productive results or sometimes may cause serious issues to plants. The environment poses some serious threats to plants as it is changing drastically over the course of years. Plants have been resistant to many of biotic and abiotic stresses naturally but now it is getting challenging. The major issues faced by plants are drought, high salt concentration, temperature and many other factors. These issues can be compensated by engineering plants with such novel genes which cause the release of ethylene responsive factor in the case of drought and salt intolerance. There are various studies to engineer the stress sensitive plants with SodERF3, a novel sugarcane ethylene responsive factor which causes promising tolerance in transgenic plants.

Downloads

Download data is not yet available.

References

Alcazar-Roman, A.R., Bolger, T.A. and Wente, S.R. (2010) Control of mRNA export and translation termination by inositol hexakisphosphate requires specific interaction with Gle1. J. Biol. Chem., 285, 16683–16692.

Alkalaeva, E.Z., Pisarev, A.V., Frolova, L.Y., Kisselev, L.L. and Pestova, T.V. (2006) In vitro reconstitution of eukaryotic translation reveals cooperativity between release factors eRF1 and eRF3. Cell, 125, 1125–1136.

Allen, M. D., Yamasaki, K., Ohme‐Takagi, M., Tateno, M., & Suzuki, M. (1998). A novel mode of DNA recognition by a β‐sheet revealed by the solution structure of the GCC‐box binding domain in complex with DNA. The EMBO Journal, 17(18), 5484-5496.

American Association for the Advancement of Science. (1985). A simple and general method for transferring genes into plants. Science, 227(4691), 1229-1231.

Anderson JP, Lichtenzveig J, Gleason C, Oliver RP, Singh KB. (2010) The B-3 ethylene response factor MtERF1-1 mediates resistance to a subset of root pathogens in Medicago truncatula without adversely affecting symbiosis with rhizobia. Plant Physiol., 154:861-73

Anderson, J. P., Badruzsaufari, E., Schenk, P. M., Manners, J. M., Desmond, O. J., Ehlert, C., & Kazan, K. (2004). Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis. The Plant Cell, 16(12), 3460-3479.

Baierlein, C., Hackmann, A., Gross, T., Henker, L., Hinz, F. and Krebber, H. (2013) Monosome formation during translation initiation requires the serine/arginine-rich protein Npl3. Mol. Cell. Biol., 33, 4811–4823.

Banno, H., Ikeda, Y., Niu, Q. W., & Chua, N. H. (2001). Overexpression of Arabidopsis ESR1 induces initiation of shoot regeneration. The Plant Cell, 13(12), 2609-2618.

Barthelme, D., Dinkelaker, S., Albers, S.V., Londei, P., Ermler, U. and Tampe, R. (2011) Ribosome recycling depends on a mechanistic link between the FeS cluster domain and a conformational switch of the twin-ATPase ABCE1. Proc. Natl. Acad. Sci. USA, 108, 3228–3233.

Benson, D. A., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J., Rapp, B. A., & Wheeler, D. L. (2002). GenBank. Nucleic acids research, 30(1), 17-20.

Berrocal‐Lobo, M., Molina, A., & Solano, R. (2002). Constitutive expression of Ethylene‐Response‐Factor1 in Arabidopsis confers resistance to several necrotrophic fungi. The Plant Journal, 29(1), 23-32.

Beznoskova,P., Cuchalova,L., Wagner,S., Shoemaker,C.J., Gunisova,S., von der Haar,T. and Valasek,L.S. (2013) Translation initiation factors eIF3 and HCR1 control translation termination and stop codon read-through in yeast cells. PLoS Genet., 9, e1003962.

Bolger, T.A., Folkmann, A.W., Tran, E.J. and Wente, S.R. (2008) The mRNA export factor Gle1 and inositol hexakisphosphate regulate distinct stages of translation. Cell, 134, 624–633.

Borrás-Hidalgo, O., Thomma, B. P., Carmona, E., Borroto, C. J., Pujol, M., Arencibia, A., & Lopez, J. (2005). Identification of sugarcane genes induced in disease-resistant somaclones upon inoculation with Ustilagoscitaminea or Bipolarissacchari. Plant Physiology and Biochemistry, 43(12), 1115-1121.

Broun, P. (2004). Transcription factors as tools for metabolic engineering in plants. Current opinion in plant biology, 7(2), 202-209.

Casu, R. E., Dimmock, C. M., Chapman, S. C., Grof, C. P., McIntyre, C. L., Bonnett, G. D., & Manners, J. M. (2004). Identification of differentially expressed transcripts from maturing stem of sugarcane by in silico analysis of stem expressed sequence tags and gene expression profiling. Plant molecular biology, 54(4), 503-517.

Cavalcante, J. J. V., Vargas, C., Nogueira, E. M., Vinagre, F., Schwarcz, K., Baldani, J. I., ...&Hemerly, A. S. (2007). Members of the ethylene signalling pathway are regulated in sugarcane during the association with nitrogen-fixing endophytic bacteria. Journal of Experimental Botany, 58(3), 673-686.

Cheng, M. C., Liao, P. M., Kuo, W. W., & Lin, T. P. (2013). The Arabidopsis ETHYLENE RESPONSE FACTOR1 regulates abiotic stress-responsive gene expression by binding to different cis-acting elements in response to different stress signals. Plant physiology, 162(3), 1566-1582.

Cheng, Z., Saito, K., Pisarev, A.V., Wada, M., Pisareva, V.P., Pestova, T.V., Gajda, M., Round, A., Kong, C., Lim, M. et al. (2009) Structural insights into eRF3 and stop codon recognition by eRF1. Genes Dev., 23, 1106–1118.

Murashige, C.T., & Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum, 15, 473-97.

D’Hont, A. N. G. E. L. I. Q. U. E., & Glaszmann, J. C. (2001). Sugarcane genome analysis with molecular markers, a first decade of research. In ProcIntSoc Sugarcane Technol., 24: 556-559).

Denekamp, M., &Smeekens, S. C. (2003). Integration of wounding and osmotic stress signals determines the expression of the AtMYB102 transcription factor gene. Plant Physiology, 132(3), 1415-1423.

des Georges, A., Hashem, Y., Unbehaun, A., Grassucci, R.A., Taylor, D., Hellen, C.U., Pestova, T.V. and Frank, J. (2014) Structure of the mammalian ribosomal pre-termination complex associated with eRF1.eRF3.GDPNP. Nucleic Acids Res., 42, 3409–3418.

Dey, S., & Corina Vlot, A. (2015). Ethylene responsive factors in the orchestration of stress responses in monocotyledonous plants. Frontiers in Plant Science, 6, 640.

Dong, J., Lai, R., Nielsen, K., Fekete, C.A., Qiu, H. and Hinnebusch, A.G. (2004) The essential ATP-binding cassette protein RLI1 functions in translation by promoting preinitiation complex assembly. J. Biol. Chem., 279, 42157–42168.

Eurwilaichitr,L., Graves,F.M., Stansfield,I. and Tuite,M.F. (1999) The C-terminus of eRF1 defines a functionally important domain for translation termination in Saccharomyces cerevisiae. Mol. Microbiol., 32, 485–496.

Grivet, L., & Arruda, P. (2002). Sugarcane genomics: depicting the complex genome of an important tropical crop. Current opinion in plant biology, 5(2), 122-127.

Gross, T., Siepmann, A., Sturm, D., Windgassen, M., Scarcelli, J.J., Seedorf, M., Cole, C.N. and Krebber, H. (2007) The DEAD-box RNA helicase Dbp5 functions in translation termination. Science , 315, 646–649.

Gu, Y. Q., Wildermuth, M. C., Chakravarthy, S., Loh, Y. T., Yang, C., He, X., & Martin, G. B. (2002). Tomato transcription factors Pti4, Pti5, and Pti6 activate defense responses when expressed in Arabidopsis. The Plant Cell, 14(4), 817-831.

Guo, Y. H., Yu, Y. P., Wang, D., Wu, C. A., Yang, G. D., Huang, J. G., & Zheng, C. C. (2009). GhZFP1, a novel CCCH‐type zinc finger protein from cotton, enhances salt stress tolerance and fungal disease resistance in transgenic tobacco by interacting with GZIRD21A and GZIPR5. New Phytologist, 183(1), 62-75.

Gutterson, N., & Reuber, T. L. (2004). Regulation of disease resistance pathways by AP2/ERF transcription factors. Current opinion in plant biology, 7(4), 465-471.

Hanna-Rose, W., & Hansen, U. (1996). Active repression mechanisms of eukaryotic transcription repressors. Trends in Genetics, 12(6), 229-234.

He, P., Warren, R. F., Zhao, T., Shan, L., Zhu, L., Tang, X., & Zhou, J. M. (2001). Overexpression of Pti5 in tomato potentiates pathogen-induced defense gene expression and enhances disease resistance to Pseudomonas syringae pv. tomato. Molecular plant-microbe interactions, 14(12), 1453-1457.

Jackson, R.J., Hellen, C.U. and Pestova, T.V. (2012) Termination and post-termination events in eukaryotic translation. Adv. Protein Chem. Struct. Biol., 86, 45–93.

Kasuga, M., Miura, S., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2004). A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought-and low-temperature stress tolerance in tobacco by gene transfer. Plant and Cell Physiology, 45(3), 346-350.

Khoshnevis, S., Gross, T., Rotte, C., Baierlein, C., Ficner, R. and Krebber, H. (2010) The iron-sulphur protein RNase L inhibitor functions in translation termination. EMBO Rep., 11, 214–219.

Kispal, G., Sipos, K., Lange, H., Fekete, Z., Bedekovics, T., Janaky, T., Bassler, J., Aguilar Netz, D.J., Balk, J., Rotte, C. et al. (2005) Biogenesis of cytosolic ribosomes requires the essential iron-sulphur protein Rli1p and mitochondria. EMBO J., 24, 589–598.

Kloepper JW, Ryu CM, Zhang S. (2004). Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology., 94:1259-66

Liu, Q., Kasuga, M., Sakuma, Y., Abe, H., Miura, S., Yamaguchi-Shinozaki, K., & Shinozaki, K. (1998). Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought-and low-temperature-responsive gene expression, respectively, in Arabidopsis. The Plant Cell, 10(8), 1391-1406.

Trujillo, L.E., M. Sotolongo, C. Menendez, M. E. Ochogavia, Y.Coll, I. Hernandez, O. Borras-Hidalgo, B.P.H.J. Thomma, P. Vera, L. Hernandez. (2008). SodERF3, a novel Factor enhances salt tolerance and drought when over expressed in tobacco plants . Plant and Cell Physiology. 49(4), 512-525

Menke, F. L., Champion, A., Kijne, J. W., & Memelink, J. (1999). A novel jasmonate‐and elicitor‐responsive element in the periwinkle secondary metabolite biosynthetic gene Str interacts with a jasmonate‐and elicitor‐inducible AP2‐domain transcription factor, ORCA2. The EMBO Journal, 18(16), 4455-4463.

Merkulova, T.I., Frolova,L.Y., Lazar,M., Camonis,J. and Kisselev,L.L. (1999) C-terminal domains of human translation termination factors eRF1 and eRF3 mediate their in vivo interaction. FEBS Lett., 443, 41–47.

Mikhailova, T., Shuvalova, E., Ivanov, A., Susorov, D., Shuvalov, A., Kolosov, P.M. and Alkalaeva, E. (2017) RNA helicase DDX19 stabilizes ribosomal elongation and termination complexes. Nucleic Acids Res., 45, 1307–1318.

Mith S, Read D. Mycorrhizal symbiosis. Cambridge, UK: Academic press, 2008.

Neumann, B., Wu, H., Hackmann, A. and Krebber, H. (2016) Nuclear export of Pre-Ribosomal subunits requires Dbp5, but not as an RNA-Helicase as for mRNA export. PLoS One, 11, e0149571.

Noble, K.N., Tran, E.J., Alcazar-Roman, A.R., Hodge, C.A., Cole, C.N. and Wente, S.R. (2011) The Dbp5 cycle at the nuclear pore complex during mRNA export II: nucleotide cycling and mRNP remodeling by Dbp5 are controlled by Nup159 and Gle1. Genes Dev., 25, 1065–1077.

Orlowska E, Basile A, Kandzia I, Llorente B, Kirk HG, Cvitanich C. (2012). Revealing the importance of meristems and roots for the development of hypersensitive responses and full foliar resistance to Phytophthora infestans in the resistant potato cultivar Sarpo Mira. J Exp Bot., 63:4765-79

Pisarev, A.V., Skabkin, M.A., Pisareva, V.P., Skabkina, O.V., Rakotondrafara, A.M., Hentze, M.W., Hellen, C.U. and Pestova, T.V. (2010) The role of ABCE1 in eukaryotic posttermination ribosomal recycling. Mol. Cell, 37, 196–210.

Preis, A., Heuer, A., Barrio-Garcia, C., Hauser, A., Eyler, D.E., Berninghausen, O., Green, R., Becker, T. and Beckmann, R. (2014) Cryoelectron microscopic structures of eukaryotic translation termination complexes containing eRF1-eRF3 or eRF1-ABCE1. Cell Rep., 8: 59–65.

Puranik, S., Sahu, P. P., Srivastava, P. S., & Prasad, M. (2012). NAC proteins: regulation and role in stress tolerance. Trends in plant science, 17(6), 369-381.

Quan, R., Hu, S., Zhang, Z., Zhang, H., Zhang, Z., & Huang, R. (2010). Overexpression of an ERF transcription factor TSRF1 improves rice drought tolerance. Plant Biotechnology Journal, 8(4), 476-488.

Salas-Marco, J. and Bedwell, D.M. (2004) GTP hydrolysis by eRF3 facilitates stop codon decoding during eukaryotic translation termination. Mol. Cell. Biol., 24, 7769–7778.

Shoemaker, C.J. and Green, R. (2011) Kinetic analysis reveals the ordered coupling of translation termination and ribosome recycling in yeast. Proc. Natl. Acad. Sci. USA, 108, E1392–E1398.

Shoemaker,C.J., Eyler,D.E. and Green,R. (2010) Dom34:Hbs1 promotes subunit dissociation and peptidyl-tRNA drop-off to initiate no-go decay. Science, 330, 369–372.

Strunk,B.S., Novak,M.N., Young,C.L. and Karbstein,K. (2012) A translation-like cycle is a quality control checkpoint for maturing 40S ribosome subunits. Cell, 150, 111–121.

Taylor, D., Unbehaun, A., Li, W., Das, S., Lei, J., Liao, H.Y., Grassucci, R.A., Pestova, T.V. and Frank, J. (2012) Cryo-EM structure of the mammalian eukaryotic release factor eRF1-eRF3-associated termination complex. Proc. Natl. Acad. Sci. USA, 109, 18413–18418.

Tieg, B. and Krebber, H. (2013). Dbp5 - From nuclear export to translation. Biochim. Biophys. Acta, 1829, 791–798.

Trujillo, L. E., Sotolongo, M., Menendez, C., Ochogavia, M. E., Coll, Y., Hernandez, I., ...& Hernandez, L. (2008). SodERF3, a novel sugarcane ethylene responsive factor (ERF), enhances salt and drought tolerance when overexpressed in tobacco plants. Plant and Cell Physiology, 49(4), 512-525.

Yarunin, A., Panse, V.G., Petfalski, E., Dez, C., Tollervey, D. and Hurt, E.C. (2005) Functional link between ribosome formation and biogenesis of iron-sulfur proteins. EMBO J., 24, 580–588.

Zuo, K. J., Qin, J., Zhao, J. Y., Ling, H., Zhang, L. D., Cao, Y. F., & Tang, K. X. (2007). Over-expression GbERF2 transcription factor in tobacco enhances brown spots disease resistance by activating expression of downstream genes. Gene, 391(1-2), 80-90.

Downloads

Published

2020-12-12

How to Cite

Ali, M., Rafique, F., Ali, Q., & Malik, A. (2020). GENETIC MODIFICATION FOR SALT AND DROUGHT TOLERANCE IN PLANTS THROUGH SODERF3. Biological and Clinical Sciences Research Journal, 2020(1). https://doi.org/10.54112/bcsrj.v2020i1.22

Issue

Section

Review Articles

Most read articles by the same author(s)

1 2 3 4 5 6 7 8 > >>