AMELIORATION OF CADMIUM STRESS ON TOMATO (LYCOPERSICON ESCULENTUM) BY TRIACONTANOL APPLICATION

Authors

  • MA SAEED Department of Horticultural Sciences, FA& ES, The Islamia University of Bahawalpur 63100, Punjab, Pakistan
  • MR SHAHEEN Department of Horticultural Sciences, FA& ES, The Islamia University of Bahawalpur 63100, Punjab, Pakistan
  • R HUSSAIN Department of Horticultural Sciences, FA& ES, The Islamia University of Bahawalpur 63100, Punjab, Pakistan
  • S ANJUM Institute of Botany, Faculty of Life Sciences, University of the Punjab, Lahore, 54590, Pakistan
  • M SARWAR Department of Horticulture, Faculty of Agricultural Sciences, University of the Punjab, Lahore, 54590, Pakistan
  • A SHABBIR Department of Horticultural Sciences, FA& ES, The Islamia University of Bahawalpur 63100, Punjab, Pakistan
  • MBE TARIQ Department of Horticultural Sciences, FA& ES, The Islamia University of Bahawalpur 63100, Punjab, Pakistan

DOI:

https://doi.org/10.54112/bcsrj.v2023i1.634

Keywords:

Tomato, Cadmium Stress, ; Triacontanol (TRIA), Heavy Metal Toxicity, Plant Physiology, Hydroponic System, Morphological Characteristics, Enzymatic Response, Biochemical Analysis, Mitigation Strategies

Abstract

Lead (Pb), copper (Cu), zinc (Zn), and cadmium (Cd) tend to build up in the roots of tomato plants and are then taken up by the leaves and fruits, resulting in significant removal from the soil.  Plant growth and development are at risk due to the soil's buildup and toxicity of heavy metals (HMs). Cadmium, a hazardous element, inhibits the development and yield of tomatoes. Triacontanol (TRIA) enhances plant development when exposed to low concentrations of Cd, hence mitigating its harmful effects. This work used the exogenous triacontanol (TRIA) application to mitigate the adverse physiological impacts of cadmium (Cd) on tomato plants. The current study investigated tomatoes' physical characteristics, functions, and chemical composition to get a deeper understanding of how Triacontanol responds to stress caused by cadmium. Two experiments were laid out under a Completely Randomized Design (CRD), and three replications under a hydroponic system. In the first experiment, the effects of Cd on tomato were grown hydroponically and exposed to cadmium chloride at five concentration levels (control, 1.5, 03, 06 and 12µmol/L). While in the second experiment tomato grown hydroponically, and cadmium used in the form of CdCl2 at five concentration levels (control, 1.5, 03, 06 and 12µmol/L)  with one level of TRIA 10µM/L was be applied to facilitate the Cadmium stress on plant. The Hoagland's solution was  used to irrigate the plants after the initial 72 hours of pretreatment in both experiments at 35±1℃; 70-75%RH. Data for tomato plants' morphological, physiological, and biochemical characteristics was recorded. Results revealed that mitigation through triacontanol (TRIA) @ 10µmol/L best affects cadmium stress. It was noted that triacontanol (TRIA) @ 10µmol/L significantly affects tomato plants' morphological, enzymatic, and physiological characteristics at 1.5µmol/L of cadmium stress.

Downloads

Download data is not yet available.

References

Abbas, T., M. Rizwan, S. Ali, M. Adrees, M. Zia-ur-Rehman, M.F. Qayyum, Y.S. Ok and G. Murtaza. 2018. Effect of biochar on alleviation of cadmium toxicity in wheat (Triticum aestivum L.) grown on Cd-contaminated saline soil. Environ. Sci. Pollut. Res. 25:25668–25680.

Adefemi, O.S. and E.E. Awokunmi. 2013. Uptake of Heavy Metals by Tomato (Lycopersicum esculentus) Grown on Soil Collected from Dumpsites in Ekiti State, South West, Nigeria. Int. J. Chem. 5:70–75.

Agius, C., S. von Tucher and W. Rozhon. 2022. The Effect of Salinity on Fruit Quality and Yield of Cherry Tomatoes. Hortic. 2022, Vol. 8, Page 59 8:59.

Alharbi, B.M., A.M. Abdulmajeed and H. Hassan. 2021. Biochemical and molecular effects induced by triacontanol in acquired tolerance of rice to drought stress. Genes (Basel). 12.

Ali, L., M.R. Shaheen, M.Z. Ihsan, S. Masood, M. Zubair, F. Shehzad and A.U.H. Khalid. 2022. Growth, photosynthesis and antioxidant enzymes modulations in broccoli (Brassica oleracea L. var. italica) under salinity stress. South African J. Bot. 148:104–111.

Aliu, A.T., M.B. Adewole, N.O. Haastrup, O.O. Bolaji, E.O. Oladipupo-Alade, F.I. Abdulazeez, O.W. Bolaji and M.D. Oyedele. 2022. Comparative assessment of physiological performance and yield of maize varieties to biochar amended metal polluted soil. J. Res. For. Wildl. Environ. 14:54–63.

Alotaibi, M.O., G. Khamis, H. Abdelgawad, A.E. Mohammed, M.S. Sheteiwy, M.M. Elobeid and A.M. Saleh. 2021. Lepidium sativum sprouts grown under elevated CO2 hyperaccumulate glucosinolates and antioxidants and exhibit enhanced biological and reduced antinutritional properties. Biomolecules 11.

Anjum, S., M. Hussain, M. Hameed and R. Ahmad. 2021. Physiological, biochemical and defense system responses of roadside vegetation to auto-exhaust pollution. Bulletin of Environmental Contamination and Toxicology. 2021:107, 946-954.

Bahmani, R., D.G. Kim, J.A. Kim and S. Hwang. 2016. The density and length of root hairs are enhanced in response to cadmium and arsenic by modulating gene expressions involved in fate determination and morphogenesis of root hairs in arabidopsis. Front. Plant Sci. 7:1763.

Basyal, K., K. Khanal and Dhakal S. 2019. Socio-Economic Study of Tomato Producing Farmers in Lamahi, Dang. Biomed. J. Sci. Tech. Res. 20:15441–43.

Bionity. 2022.

Carvalho Bertoli, A., M. Gabriel Cannata, R. Carvalho, A.R. Ribeiro Bastos, M. Puggina Freitas and A. dos Santos Augusto. 2012. Lycopersicon esculentum submitted to Cd-stressful conditions in nutrition solution: Nutrient contents and translocation. Ecotoxicol. Environ. Saf. 86:176–181.

Chen, L., M. Wu, W. Jin, T. Lei, Y. Li, X. Wu and S. Fu. 2023. Gene identification and transcriptome analysis of cadmium stress in tomato. Front. Sustain. Food Syst. 7:1–11.

Chibuike, G.U. and S.C. Obiora. 2014. Heavy Metal Polluted Soils: Effect on Plants and Bioremediation Methods. Appl. Environ. Soil Sci. 2014.

Chourasia, K.N., M.K. Lal, R.K. Tiwari, D. Dev, H.B. Kardile, V.U. Patil, A. Kumar, G. Vanishree, D. Kumar, V. Bhardwaj, J.K. Meena, V. Mangal, R.M. Shelake, J.Y. Kim and D. Pramanik. 2021. Salinity stress in potato: Understanding physiological, biochemical and molecular responses. Life 11.

Dhalaria, R., D. Kumar, H. Kumar, E. Nepovimova, K. Kuca, M.T. Islam and R. Verma. 2020. Arbuscular Mycorrhizal Fungi as Potential Agents in Ameliorating Heavy Metal Stress in Plants. Agron. 2020, Vol. 10, Page 815 10:815.

Dias, M.C., C. Monteiro, J. Moutinho-Pereira, C. Correia, B. Gonçalves and C. Santos. 2013. Cadmium toxicity affects photosynthesis and plant growth at different levels. Acta Physiol. Plant. 35:1281–1289.

Dutta, A., A. Patra, H.S. Jatav, S.S. Jatav, S.K. Singh, E. Sathyanarayana, S. Verma, P. Singh, A. Dutta, A. Patra, H.S. Jatav, S.S. Jatav, S.K. Singh, E. Sathyanarayana, S. Verma and P. Singh. 2020. Toxicity of Cadmium in Soil-Plant-Human Continuum and Its Bioremediation Techniques. Soil Contam. - Threat. Sustain. Solut., doi: 10.5772/INTECHOPEN.94307.

Eidelman, S. 2013. Present status and prospects of tomatoes in Pakistan. Acta Phys. Pol. B 38:3499–3506.

EL Sabagh, A., M.S. Islam, A. Hossain, M.A. Iqbal, M. Mubeen, M. Waleed, M. Reginato, M. Battaglia, S. Ahmed, A. Rehman, M. Arif, H.U.R. Athar, D. Ratnasekera, S. Danish, M.A. Raza, K. Rajendran, M. Mushtaq, M. Skalicky, M. Brestic, W. Soufan, S. Fahad, S. Pandey, M. Kamran, R. Datta and M.T. Abdelhamid. 2022. Phytohormones as Growth Regulators During Abiotic Stress Tolerance in Plants. Front. Agron. 4:4.

Emamverdian, A., Y. Ding, F. Mokhberdoran and Y. Xie. 2015. Heavy metal stress and some mechanisms of plant defense response. Sci. World J. 2015.

Ezeh, C.C., C.J. Obi and A.N. Moneke. 2022. Application of microbial synthesized phytohormones in the management of environmental impacts on soils. Bio-Research 20:1409–1425.

Feng, L., S. He, W. Zhao, J. Ding, J. Liu, Q. Zhao and L. Wei. 2022. Can biochar addition improve the sustainability of intermittent aerated constructed wetlands for treating wastewater containing heavy metals? Chem. Eng. J. 444:136636.

Fuentes, J.E.G., B.F.H. Castellanos, E.N.R. Martínez, W.A.N. Ortiz, A.B. Mendoza and J.M. Macías. 2022. Outcomes of foliar iodine application on growth, minerals and antioxidants in tomato plants under salt stress. Folia Hortic. 34:27–37.

Giannopolitis, C.N. and S.K. Ries. 1977. Superoxide DismutasesI. Occurrence in Higher Plants. Plant Physiol. 59:309–314.

Goyal, D., A. Yadav, M. Prasad, T.B. Singh, P. Shrivastav, A. Ali, P.K. Dantu and S. Mishra. 2020. Effect of heavy metals on plant growth: An overview. Contam. Agric. Sources, Impacts Manag. 79–101.

Grochowska-Niedworok, E., J. Niec and R. Baranowska. 2020. Assessment of cadmium and lead content in tomatoes and tomato products. Rocz. Państwowego Zakładu Hig. 71:313–319.

Haider, F.U., C. Liqun, J.A. Coulter, S.A. Cheema, J. Wu, R. Zhang, M. Wenjun and M. Farooq. 2021a. Cadmium toxicity in plants: Impacts and remediation strategies. Ecotoxicol. Environ. Saf. 211:111887.

---, ---, ---, ---, ---, ---, --- and ---. 2021b. Cadmium toxicity in plants: Impacts and remediation strategies. Ecotoxicol. Environ. Saf. 211:111887.

Hassan, M.J., M.A. Raza and S.U. Rehman. 2020. Effect of Cadmium Toxicity on Growth, Oxidative Damage, Antioxidant Defense System and Cadmium Accumulation in Two Sorghum Cultivars. Plants 9:1–14.

Hossain, Z. and S. Komatsu. 2013. Contribution of proteomic studies towards understanding plant heavy metal stress response. Front. Plant Sci. 3:310.

Imran. 2022. Growing of off-season tomato in high tunnel and its nutritional value augmentation with integrated nutrients management Imran. , doi: 10.1080/01904167.2022.2046062.

Islam, S. and F. Mohammad. 2020. Triacontanol as a dynamic growth regulator for plants under diverse environmental conditions. Physiol. Mol. Biol. Plants 26:871–883.

Jamla, M., T. Khare, S. Joshi, S. Patil, S. Penna and V. Kumar. 2021. Omics approaches for understanding heavy metal responses and tolerance in plants. Curr. Plant Biol. 27:100213.

Kapoor, D., S. Kaur and R. Bhardwaj. 2014. Physiological and Biochemical Changes in Brassica juncea Plants under Cd-Induced Stress. Biomed Res. Int. 2014.

Karam, E.A., B. Keramat, Z. Asrar and H. Mozafari. 2016. Triacontanol-induced changes in growth, oxidative defense system in Coriander (Coriandrum sativum) under arsenic toxicity. Indian J. Plant Physiol. 21:137–142.

karam, E.A., V. Maresca, S. Sorbo, B. Keramat and A. Basile. 2017. Effects of triacontanol on ascorbate-glutathione cycle in Brassica napus L. exposed to cadmium-induced oxidative stress. Ecotoxicol. Environ. Saf. 144:268–274.

Kaur, N., S. Saini and P.K. Pati. 2022. Role of Brassinosteroids During Abiotic Stress Tolerance in Plants. Jasmonates and Brassinosteroids in Plants. CRC Press. pp.51–58.

Khalef, R.N., A.I. Hassan, H.M. Saleh, R.N. Khalef, A.I. Hassan and H.M. Saleh. 2022. Heavy Metal’s Environmental Impact. Environ. Impact Remediat. Heavy Met., doi: 10.5772/INTECHOPEN.103907.

Khan, Z., F. Xianting, M.N. Khan, M.A. Khan, K. Zhang, Y. Fu and H. Shen. 2022. The toxicity of heavy metals and plant signaling facilitated by biochar application: Implications for stress mitigation and crop production. Chemosphere 308:136466.

Klunklin, W. and G. Savage. 2017. Effect on quality characteristics of tomatoes grown under well-watered and drought stress conditions.

Kumar, A. and J.P. Verma. 2018. Does plant—Microbe interaction confer stress tolerance in plants: A review? Microbiol. Res. 207:41–52.

Li, G., S. Wan, J. Zhou, Z. Yang and P. Qin. 2010. Leaf chlorophyll fluorescence, hyperspectral reflectance, pigments content, malondialdehyde and proline accumulation responses of castor bean (Ricinus communis L.) seedlings to salt stress levels. Ind. Crops Prod. 31:13–19.

Li, Q., L. Chai, N. Tong, H. Yu and W. Jiang. 2022. Potential Carbohydrate Regulation Mechanism Underlying Starvation-Induced Abscission of Tomato Flower. Int. J. Mol. Sci. 23.

Liaqat, A., M.Z. Ihsan, M.S. Rizwan, A. Mehmood, M. Ijaz, M. Alam, M. Abdullah, M. Wajid, R. Hussain, M. Naeem and M.S. Yaqub. 2019. Inducing effect of chitosan on the physiological and biochemical indices of eggplant (Solanum Melongena L.) genotypes under heat and high irradiance. Appl. Ecol. Environ. Res. 17:11273–11287.

Liu, L., W. Li, W. Song and M. Guo. 2018. Remediation techniques for heavy metal-contaminated soils: Principles and applicability. Sci. Total Environ. 633:206–219.

Loix, C., M. Huybrechts, J. Vangronsveld, M. Gielen, E. Keunen and A. Cuypers. 2017. Reciprocal Interactions between cadmium-induced cell wall responses and oxidative stress in plants. Front Plant Sci 8:1867.

MAEHLY, A.C. and B. CHANCE. 1954. The Assay of Catalases and Peroxidases. Methods Biochem. Anal. 1:357–424.

Mallick PK. 2021. Medicinal Values of Tomato (Lycopersicon esculentum Mill.–Solanaceae). Int. J. Appl. Sci. Biotechnol. 9:166–168.

Mandal, S., M. Ghorai, U. Anand, D. Samanta, N. Kant, T. Mishra, M.H. Rahman, N.K. Jha, S.K. Jha, M.K. Lal, R.K. Tiwari, M. Kumar, Radha, D.A. Prasanth, A.B. Mane, A.V. Gopalakrishnan, P. Biswas, J. Proćków and A. Dey. 2022. Cytokinin and abiotic stress tolerance -What has been accomplished and the way forward? Front. Genet. 13:1–26.

Mao, Y., H. Tan, M. Wang, T. Jiang, H. Wei, W. Xu, Q. Jiang, H. Bao, Y. Ding, F. Wang and C. Zhu. 2022. Research Progress of Soil Microorganisms in Response to Heavy Metals in Rice. J. Agric. Food Chem. 70:8513–8522.

Meena, S., S. Taria, S. Nagar and S. Yadav. 2022. Phytohormone Engineering: A Potential Approach for Inducing Abiotic Stress Tolerance in Crop Plants. MULTIDISCIPLINARY 35.

Mengistie, G.Y. and Z.T. Awlachew. 2022. Evaluation of the Plant Growth Promotion Effect of Bacillus Species on Different Varieties of Tomato (Solanum lycopersicum L.) Seedlings. Adv. Agric. 2022.

Migocka, M. and G. Klobus. 2007. The properties of the Mn, Ni and Pb transport operating at plasma membranes of cucumber roots. Physiol Plant 129:578–587.

Mourato, M., F. Pinto, I. Moreira, J. Sales, I. Leitão and L.L. Martins. 2018. The Effect of Cd Stress in Mineral Nutrient Uptake in Plants. Cadmium Toxic. Toler. Plants From Physiol. to Remediat. 327–348.

Muratova, A., Y. Lyubun, I. Sungurtseva, O. Turkovskaya and A. Nurzhanova. 2022. Physiological and biochemical characteristic of Miscanthus × giganteus grown in heavy metal – oil sludge co-contaminated soil. J. Environ. Sci. 115:114–125.

Naciri, R., M. Lahrir, C. Benadis, M. Chtouki and A. Oukarroum. 2021. Interactive effect of potassium and cadmium on growth, root morphology and chlorophyll a fluorescence in tomato plant. Sci. Rep. 11:1–10.

Parveen, S., I.U.H. Bhat, Z. Khanam, A.E. Rak, H.M. Yusoff and M.S. Akhter. 2022. Phytoremediation: In situ alternative for pollutant removal from contaminated natural media: A brief review. Biointerface Res. Appl. Chem. 12:4945–4960.

Perfus-Barbeoch, L., N. Leonhardt, A. Vavasseur and C. Forestier. 2002. Heavy metal toxicity: Cadmium permeates through calcium channels and disturbs the plant water status. Plant J. 32:539–548.

Piršelová, B. and E. Ondrušková. 2021. Effect of cadmium chloride and cadmium nitrate on growth and mineral nutrient content in the root of fava bean (Vicia faba l.). Plants 10.

Rajendran, S., T.A.K. Priya, K.S. Khoo, T.K.A. Hoang, H.S. Ng, H.S.H. Munawaroh, C. Karaman, Y. Orooji and P.L. Show. 2022. A critical review on various remediation approaches for heavy metal contaminants removal from contaminated soils. Chemosphere 287:132369.

Sabagh, A.E.L., S. Mbarki, A. Hossain, M.A. Iqbal, M.S. Islam, A. Raza, A. Llanes, M. Reginato, M.A. Rahman, W. Mahboob, R.K. Singhal, A. Kumari, K. Rajendran, A. Wasaya, T. Javed, R. Shabbir, J. Rahim, C. Barutçular, M. Habib Ur Rahman, M.A. Raza, D. Ratnasekera, Ö. Konuskan l, M.A. Hossain, V.S. Meena, S. Ahmed, Z. Ahmad, M. Mubeen, K. Singh, M. Skalicky, M. Brestic, O. Sytar, E. Karademir, C. Karademir, M. Erman and M. Farooq. 2021. Potential Role of Plant Growth Regulators in Administering Crucial Processes Against Abiotic Stresses. Front. Agron. 3:77.

Sachdev, S., S.A. Ansari, M.I. Ansari and M. Fujita. 2021. Abiotic Stress and Reactive Oxygen Species : Generation ,. Antioxidants 10:277.

Sahab, S., I. Suhani, V. Srivastava, P.S. Chauhan, R.P. Singh and V. Prasad. 2021. Potential risk assessment of soil salinity to agroecosystem sustainability: Current status and management strategies. Sci. Total Environ. 768:144164.

Saraswat, P., M. Prasad, A. Gupta and R. Ranjan. 2022. Genome Editing Applications in Abiotic Stress Tolerance in Plants. Omics Analysis of Plants Under Abiotic Stress. Apple Academic Press, Boca Raton. pp.55–90.

Sarwar, M., S. Anjum, M. W. Alam, Q. Ali, C. M Ayyub, M. S. Haider, I. Ashraf, W. Mahboob. 2022. Triacontanol regulates morphological traits and enzymatic activities of salinity affected hot pepper plants. Scientific Reports. 2022: 12, 3736.

Sarwar, M., S. Anjum, Q. Ali, M. W. Alam and W. Mehboob. 2021. Triacontanol modulates salt stress tolerance in Cucumber by altering physiological and biochemical status of plant cell. Scientific Reports. 2021:11, 24504.

Setal, K., G. Austic, R. Zegarac, I. Osei-Bonsu, D. Hoh, M.I. Chilvers, M.G. Roth, KevinB, D. TerAvest, PrabodeWeebadde and D.M. Kramer. 2016. MultispeQ Beta: a tool for large-scale plantphenotyping connected to the openPhotosynQ network. R.Soc.opensc 3.

Shariatipour, N., Z. Shams and B. Heidari. 2022. The Role of Ionomics as Functional Genomics of Elements in Plant Abiotic Stress Tolerance. Omi. Anal. Plants Under Abiotic Stress 111–152.

Sharma, Y. and R. Bhateria. 2022. Alleviating Abiotic Stress in Plants Using Nanoparticles. Plant Stress Mitigators 541–558.

Singh, S., P. Parihar, R. Singh, V.P. Singh and S.M. Prasad. 2016. Heavy metal tolerance in plants: Role of transcriptomics, proteomics, metabolomics, and ionomics. Front. Plant Sci. 6:1143.

Smith, A. 2001. the Tomato in America - Early History, Culture, and Cookery - Smith,Af. University of Illinois Press.

Sofo, A., N.A. Khan, I. D’Ippolito and F. Reyes. 2022. Subtoxic levels of some heavy metals cause differential root-shoot structure, morphology and auxins levels in Arabidopsis thaliana. Plant Physiol. Biochem. 173:68–75.

Souza, L.A., Camargos L S and M.E.A. Carvalho. 2018. Toxic metal phytoremediation using high biomass non-hyperaccumulator crops: new possibilities for bioenergy resources. Phytoremediation Methods, Manag. Assess. 1–25.

Steel, R., J.H. Torrie and D.A. Dicky. 1997. Principles and procedures of statistics, A biological approach. 3rd ED. New York(U.S.A).

Suhani, I., S. Sahab, V. Srivastava and R.P. Singh. 2021. Impact of cadmium pollution on food safety and human health. Elsevier 27:1–7.

Svobodová, B. and V. Kuban. 2018. Solanaceae: A family well-known and still surprising. Phytochem. Veg. 296–372.

Sytar, O., P. Kumari, S. Yadav, M. Brestic and A. Rastogi. 2019. Phytohormone Priming: Regulator for Heavy Metal Stress in Plants. J. Plant Growth Regul. 38:739–752.

Talebzadeh, F. and C. Valeo. 2022. Evaluating the Effects of Environmental Stress on Leaf Chlorophyll Content as an Index for Tree Health. IOP Conf. Ser. Earth Environ. Sci. 1006.

Tangahu, B.V., S.R. Sheikh Abdullah, H. Basri, M. Idris, N. Anuar and M. Mukhlisin. 2011. A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int. J. Chem. Eng., doi: 10.1155/2011/939161.

Tanveer, K., S. Gilani, Z. Hussain, R. Ishaq, M. Adeel and N. Ilyas. 2019. Effect of salt stress on tomato plant and the role of calcium. J. Plant Nutr. 43:28–35.

Thakur, M., S. Praveen, P.R. Divte, R. Mitra, M. Kumar, C.K. Gupta, U. Kalidindi, R. Bansal, S. Roy, A. Anand and B. Singh. 2022. Metal tolerance in plants: Molecular and physicochemical interface determines the “not so heavy effect” of heavy metals. Chemosphere 287:131957.

Tsai, Y.C., K.C. Chen, T.S. Cheng, C. Lee, S.H. Lin and C.W. Tung. 2019. Chlorophyll fluorescence analysis in diverse rice varieties reveals the positive correlation between the seedlings salt tolerance and photosynthetic efficiency. BMC Plant Biol. 19:403.

Upadhyay, R. 2022. Heavy Metals in our Ecosystem. Heavy Met. Plants Physiol. to Mol. Approach 1–15.

Verma, T., S. Bhardwaj, J. Singh, D. Kapoor and R. Prasad. 2022. Triacontanol as a versatile plant growth regulator in overcoming negative effects of salt stress. J. Agric. Food Res. 10.

Waqeel, J. and S.T. Khan. 2022. Microbial Biofertilizers and Micronutrients Bioavailability: Approaches to Deal with Zinc Deficiencies. Microb. Biofertilizers Micronutr. Availab. 239–297.

Wilson, K., R.D. V. Sundar and S. Arunachalam. 2022. A Review on the Role of Compost Microbes in the Abiotic Stress Tolerance in Plants. ECS Trans. 107:13723–13731.

Xiong, R., X. Gao, X. Tu, Y. Mao, L. Jiang, L. Zheng and Y. Du. 2022. Heavy metal remediation in sludge compost: Recent progress. J. Renew. Mater. 10:469–486.

Xu, Z., Q. Li, P. Yang, H.J. Ye, Z.S. Chen, S.H. Guo and E.Y. Zeng. 2017. Impact of osmoregulation on the differences in Cd accumulation between two contrasting edible amaranth cultivars grown on Cd-polluted saline soils. Environ. Pollut. 224:89–97.

Downloads

Published

2023-12-30

How to Cite

SAEED, M., SHAHEEN, M., HUSSAIN, R., ANJUM, S., SARWAR, M., SHABBIR, A., & TARIQ, M. (2023). AMELIORATION OF CADMIUM STRESS ON TOMATO (LYCOPERSICON ESCULENTUM) BY TRIACONTANOL APPLICATION. Biological and Clinical Sciences Research Journal, 2023(1), 634. https://doi.org/10.54112/bcsrj.v2023i1.634

Most read articles by the same author(s)

1 2 > >>