EVALUATION OF GENETIC VARIABILITY AND HERITABILITY OF WHEAT GENOTYPES UNDER LATE SOWING EFFECTS

Authors

  • AU REHMAN Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of The Punjab, Lahore, Pakistan
  • MF KHAN Pulses Section, Regional Agriculture Research Institute, Bahawalpur, Pakistan
  • A ABBAS Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of The Punjab, Lahore, Pakistan
  • M JAVED Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of The Punjab, Lahore, Pakistan
  • MZ ABBAS Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of The Punjab, Lahore, Pakistan
  • M HUSSAIN Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of The Punjab, Lahore, Pakistan
  • S Ul-ALLAH College of Agricultural Sciences, BZU, Bahadur Sub Campus Layyah, Pakistan

DOI:

https://doi.org/10.54112/bcsrj.v2023i1.268

Keywords:

Triticum aestivum, late sowing, genotypes, biological yield, grain yield

Abstract

(Triticum aestivum) is staple food for more than half of the world population. In the present study 10 genotypes were sown to check the wheat genotype's genetic variability and under late sowing. Exploration occurred at the Department of Agriculture, BZU, Bahadur sub-Campus, Layyah during 2019-2020. The investigation was spread out in understanding to Randomized Complete Block Design (RCBD). Perceptions on various Traits of wheat Genotype to check the late effect were recorded from 3 plants of every wheat genotype. Information was recorded to evaluate the late sowing effect (Plant Height, Spike Length, No. of Spikelet’s, No. of Tillers, Grain yield per plant and Biological Yield). FSD-83 show great resistance against late sowing and their traits are less affected by late sowing. FSD-83 has high grain yield than other varieties in late sowing. Each trait of FSD-83 resists better against late sowing than different varieties. Extreme yield trait of LY-73 effects by late sowing. Information indicated that late sowing decreases grain production of each wheat Genotype. So, it is recommended that the breeder should sow wheat genotypes an ideal time on 25 October – 15 November. Present discoveries show that each trait of wheat genotype especially grain yield, affects late sowing and decreases grain yield of every wheat genotype, but FSD-83 resist better and shows less effect of late sowing on grain yield.

Downloads

Download data is not yet available.

References

Aaliya, K., Qamar, Z., Ahmad, N. I., Ali, Q., Munim, F. A., & Husnain, T. (2016). Transformation, evaluation of gtgene and multivariate genetic analysis for morpho-physiological and yield attributing traits in Zea mays. Genetika, 48(1), 423-433.

Abbas, H. G., Mahmood, A., & Ali, Q. (2015). Genetic variability and correlation analysis for various yield traits of cotton (Gossypium hirsutum L.). Journal of Agricultural Research, 53(4), 481-491.

Abbas, H. G., Mahmood, A., & Ali, Q. (2016). Zero tillage: a potential technology to improve cotton yield. Genetika, 48(2), 761-776.

Ahmad, H. M., Ahsan, M., Ali, Q., & Javed, I. (2012). Genetic variability, heritability and correlation studies of various quantitative traits of mung bean (Vigna radiate L.) at different radiation levels. International Research Journal of Microbiology, 3(11), 352-362.

Ajmal, S. U., Zakir, N., & Mujahid, M. Y. (2009). Estimation of genetic parameters and character association in wheat. Journal of Agricultural and Biological Sciences, 1(1), 15-18.

Akçura, M. (2009). Genetic variability and interrelationship among grain yield and some quality traits in Turkish winter durum wheat landraces. Turkish Journal of Agriculture and Forestry, 33(6), 547-556.

Ali, F., Ahsan, M., Ali, Q., & Kanwal, N. (2017). Phenotypic stability of Zea mays grain yield and its attributing traits under drought stress. Frontiers in plant science, 8, 1397.

Ali, Q. and M. Ahsan, (2012). Estimation of genetic variability and correlation analysis for quantitative traits in chickpea (Cicer arietinum L.). International Journal of Agro-Veterinary and Medical Sciences, 6(4): 241-249.

Ali, Q., Ahsan, M., & Saleem, M. (2010a). Genetic variability and trait association in chickpea (Cicer arietinum L.). Electronic Journal of Plant Breeding, 1(3), 328-333.

Ali, Q., Ahsan, M., Ali, F., Aslam, M., Khan, N. H., Munzoor, M., ... & Muhammad, S. (2013). Heritability, heterosis and heterobeltiosis studies for morphological traits of maize (Zea mays L.) seedlings. Advancements in Life Sciences, 1(1):52-63.

Ali, Q., Ahsan, M., Kanwal, N., Ali, F., Ali, A., Ahmed, W., ... & Saleem, M. (2016). Screening for drought tolerance: comparison of maize hybrids under water deficit condition. Advancements in Life Sciences, 3(2), 51-58.

Ali, Q., Ahsan, M., Khaliq, I., Elahi, M., Shahbaz, M., Ahmed, W., & Naees, M. (2011a). Estimation of genetic association of yield and quality traits in chickpea (Cicer arietinum L.). International Research Journal Plant Science, 2(6), 166-169.

Ali, Q., Ahsan, M., Tahir, M. H. N., Elahi, M., Farooq, J., Waseem, M., & Sadique, M. (2011b). Genetic variability for grain yield and quality traits in chickpea. International Journal of Agro-Veterinary and Medical Sciences, 5, 201-208.

Ali, Q., Ali, A., Ahsan, M., Nasir, I. A., Abbas, H. G., & Ashraf, M. A. (2014a). Line× Tester analysis for morpho-physiological traits of Zea mays L seedlings. Advancements in Life sciences, 1(4), 242-253.

Ali, Q., Ali, A., Awan, M. F., Tariq, M., Ali, S., Samiullah, T. R., ... & Hussain, T. (2014b). Combining ability analysis for various physiological, grain yield and quality traits of Zea mays L. Life Sci J, 11(8s), 540-551.

Ali, Q., Elahi, M., Ahsan, M., Tahir, M. H. N., Khaliq, I., Kashif, M., ... & Ejaz, M. (2012). Genetic analysis of Morpho-Physiological and quality traits in chickpea genotypes (Cicer arietinum L.). African Journal of Agriculture Research, 7(23), 3403-3412.

Ali, Q., Muhammad, A., & Farooq, J. (2010b). Genetic variability and trait association in chickpea (Cicer arietinum L.) genotypes at seedling stage. Electronic Journal of Plant Breeding, 1(3), 334-341.

Allard, R. W. (1960). Principles of plant breeding. John Willey and Sons. Inc. New York, 485.

ANAS, M. (2021). Genetic variability and heritability for yield and yield associated traits of wheat genotypes in peshawar valley (Doctoral dissertation, University of Agriculture Peshawar).

Ansari, B. A., Rajper, A., & Mari, S. M. (2005). Heterotic performance in F1 hybrids derived from diallel crosses for tillers per plant in wheat under fertility regimes. Industrial Journal Agriculture Engineering and Veterinary Science 19, 28-31.

Ansari, A. H., Khushk, A. M., Sethar, M. A., Arain, N. A., & Memon, M. Y. (1989). Effect of sowing dates on the growth and yield of wheat cultivars. Pakistan Journal of Scientific and Industrial Research (Pakistan).

Ansari, K. A., Ansari, B. A., & Khund, A. (2004). Extent of heterosis and heritability in some quantitative characters of bread wheat. Indus Journal of Plant Sciences, 3(2), 189-192.

Aslam, M., Majid, A., Hobbs, P. R., Hashmi, N. I., & Byerlee, D. (1989). Wheat in the rice-wheat cropping system of the Punjab: A synthesis of On-farm research results 1984-1988.

Aycicek, M. E. H. M. E. T., & Yildirim, T. E. L. A. T. (2006). Heritability of yield and some yield components in bread wheat (Triticum aestivum L.) genotypes. Bangladesh Journal of Botany, 35(1), 17-22.

Aziz, T., Khalil, I. H., Hussain, Q., Shah, T., Ahmad, N., & Sohail, A. (2018). Heritability and selection response for grain yield and associated traits in F 3 wheat populations. Sarhad Journal of Agriculture, 34(4), 767-774.

Baloch, M. J., Baloch, E., Jatoi, W. A., & Veesar, N. F. (2013). Correlations and heritability estimates of yield and yield attributing traits in wheat (Triticum aestivum L.). Pakistan Journal of Agriculture, Agricultural Engineering, Veterinary Sciences, 29(2), 96-105.

Bhargava, A., Shukla, S., Katiyar, R. S., & Ohri, D. (2003). Selection parameters for genetic improvement in Chenopodium grain yield in sodic soil. Journal of Applied Horticulture, 5(1), 45-48.

Bhutta, W. M. (2006). Role of some agronomic traits for grain yield production in wheat (Triticum aestivum L.) genotypes under drought conditions. Revista Científica UDO Agrícola, 6(1), 11-19.

Camargo, C. E. D. O. (1984). Wheat breeding: X. Heritability estimates and associations of tolerance to aluminum toxicity and grain yield with other agronomic characteristics in wheat. Bragantia, 43, 615-628.

Collaku, A. (1994). Selection for yield and its components in a winter wheat population under different environmental conditions in Albania. Plant Breeding, 112(1), 40-46.

FAO (2019). Statistical database. www.Fao.org.

Hafeez, M. N., Khan, M. A., Sarwar, B., Hassan, S., Ali, Q., Husnain, T., & Rashid, B. (2021). Mutant Gossypium universal stress protein-2 (GUSP-2) gene confers resistance to various abiotic stresses in E. coli BL-21 and CIM-496-Gossypium hirsutum. Scientific Reports, 11(1), 20466.

Hailegiorgis, D., Mesfin, M., & Genet, T. (2011). Genetic divergence analysis on some bread wheat genotypes grown in Ethiopia. Journal of Central European Agriculture, 12(2), 0-0.

Hays, D., Mason, E., Do, J. H., Menz, M., & Reynolds, M. (2007). Expression quantitative trait loci mapping heat tolerance during reproductive development in wheat (Triticum aestivum). In Wheat Production in Stressed Environments: Proceedings of the 7th International Wheat Conference, 27 November–2 December 2005, Mar del Plata, Argentina (pp. 373-382). Springer Netherlands.

Jan, S., Mohammad, F., & Khan, F. U. (2015). Genetic potential and heritability estimates of yield traits in F3 segregating populations of bread wheat. International journal of environment, 4(2), 106-115.

Javed, I., Ahsan, M., Ahmad, H. M., & Ali, Q. (2016). Role of mutation breeding to improve Mungbean (Vigna radiata L. Wilczek) yield: An overview. Nature Science, 14(1), 63-77.

Khan, S. A. (2013). Genetic Variability and Heritability Estimates in F^ sub 2^ wheat Genotypes. International Journal of Agriculture and Crop Sciences, 5(9), 983.

Kumar, S. (2013). Study of genetic variability and heritability over extended dates of sowing in bread wheat (Triticum aestivum L.). Research in Plant Biology.

Mahmood, M. T., Khan, S. J., Ali, I., Hussain, S., Shah, S. A. S., Sadiq, M. A., ... & Ali, F. (2016). Estimation of genetic variation for agro-economic traits in wheat (Triticum aestivum L.). Journla of Environmental Agricultural Sciences, 9, 10-14.

Mitra, R., & Bhatia, C. R. (2008). Bioenergetic cost of heat tolerance in wheat crop. Current Science, 1049-1053.

Naveed, M. T., Ali, Q., Ahsan, M., & Hussain, B. (2012). Correlation and path coefficient analysis for various quantitative traits in chickpea (Cicer arietinum L.). International Journal for Agro Veterinary and Medical Sciences, 6(2), 97-106.

Prasad, B., Carver, B. F., Stone, M. L., Babar, M. A., Raun, W. R., & Klatt, A. R. (2007). Genetic analysis of indirect selection for winter wheat grain yield using spectral reflectance indices. Crop science, 47(4), 1416-1425.

Praveen, S. (2014). Genetic divergence study in improved bread wheat varieties (Triticum aestivum). African Journal of Agricultural Research, 9(4), 507-512.

Puspito, A. N., Rao, A. Q., Hafeez, M. N., Iqbal, M. S., Bajwa, K. S., Ali, Q., ... & Husnain, T. (2015). Transformation and evaluation of Cry1Ac+ Cry2A and GTGene in Gossypium hirsutum L. Frontiers in Plant Science, 6, 943

Rajaram, S., & Braun, H. J. (2008). Wheat yield potential. In International Symposium on Wheat Yield Potential: Challenges to International Wheat Breeding (pp. 103-107). CIMMYT (International Maize and Wheat Improvement Center), Mexico, Mexico.

Reynolds, M. P., Balota, M., Delgado, M. I. B., Amani, I., & Fischer, R. A. (1994). Physiological and morphological traits associated with spring wheat yield under hot, irrigated conditions. Functional Plant Biology, 21(6), 717-730.

Saleem, B., Khan, A. S., Shahzad, M. T., & Ijaz, F. (2016). Estimation of heritability and genetic advance for various metric traits in seven F2 populations of bread wheat (Triticum aestivum L.). Journal of Agricultural Sciences, Belgrade, 61(1), 1-9.

Sharma, S., & Sharma, Y. (2007). Estimates of variation and heritability of some quantitative and quality characters in Triticum turgidum L. ssp. durum (Desf.). Acta Agronomica Hungarica, 55(2), 261-264.

Thakur, P., Prasad, L. C., Prasad, R., & Chandra, K. (2020). Estimation of genetic variability, heat susceptibility index and tolerance efficiency of wheat (Triticum aestivum L.) for timely and late sown environments. Electronic Journal of Plant Breeding, 11(03), 769-775.

Wardlaw, I. F., & Wrigley, C. W. (1994). Heat tolerance in temperate cereals: an overview. Functional Plant Biology, 21(6), 695-703.

Waseem, M., Ali, Q., Ali, A., Samiullah, T. R., Ahmad, S., Baloch, D. M., ... & Bajwa, K. S. (2014). Genetic analysis for various traits of Cicer arietinum under different spacing. Life Sci J, 11(12s), 14-21.

Zafar, M. M., Mustafa, G., Shoukat, F., Idrees, A., Ali, A., Sharif, F., ... & Li, F. (2022). Heterologous expression of cry3Bb1 and cry3 genes for enhanced resistance against insect pests in cotton. Scientific Reports, 12(1), 10878.

Downloads

Published

2023-01-30

How to Cite

REHMAN, A., KHAN, M., ABBAS, A., JAVED, M., ABBAS, M., HUSSAIN, M., & Ul-ALLAH, S. (2023). EVALUATION OF GENETIC VARIABILITY AND HERITABILITY OF WHEAT GENOTYPES UNDER LATE SOWING EFFECTS. Biological and Clinical Sciences Research Journal, 2023(1), 268. https://doi.org/10.54112/bcsrj.v2023i1.268

Most read articles by the same author(s)

1 2 > >>