IDENTIFICATION OF CLIMATE RESILIENT GENOTYPES ON BASE OF PHYSIO-MORPHIC AND YIELD RELATED TRAITS IN MAIZE (ZEA MAYS L.)
DOI:
https://doi.org/10.54112/bcsrj.v2024i1.1267Keywords:
Climate Change, Maize Production, Climate-Resilient Varieties, Grain Yield, Physio-Morphic Traits, Relative, Breeding ProgramsAbstract
The impact of climate change on maize production is a growing concern. Changes in temperature, precipitation patterns, and the increased frequency of extreme weather events can significantly affect maize yields. Recognizing the importance of developing climate-resilient maize varieties, an experiment was conducted in 2022 to identify such genotypes. Ten commercial maize varieties were planted with three different sowing dates in the spring season: January 15th, January 30th, and February 15th. The results indicated that Sahiwal Gold and Malka 2016 were climate-resilient and produced high grain yields compared to other varieties across the three sowing dates. The findings concluded that the January 15th sowing date was the most effective, with genotypes producing the highest yields. Physio-morphic traits such as relative water content, chlorophyll content, days to tasseling, days to silking, plant height, and yield related traits ear length, and 100-kernel weight supported the plants in producing grain yield per hectare under changing climatic conditions. The variety Pop-1 was found to be susceptible to climate change, resulting in the lowest grain yield. The selected genotypes will be valuable in breeding programs aimed at developing climate-resilient maize varieties.
Downloads
References
Abdelsalam, N. R., Balbaa, M. G., Osman, H. T., Ghareeb, R. Y., Desoky, E.- S. M., Elshehawi, A. M., et al. (2022). Inheritance of resistance against northern leaf blight of maize using conventional breeding methods. Saudi J. Biol. Sci. 29, 1747–1759. doi: 10.1016/j.sjbs.2021.10.055
Adebayo, M., Menkir, A., Blay, E., Gracen, V., Danquah, E., and Hearne, S. (2014). Genetic analysis of drought tolerance in adapted× exotic crosses of maize inbred lines under managed stress conditions. Euphytica 196, 261–270. doi: 10. 1007/s10681-013-1029-5
Afzal, I., Imran, S., Javed, T., and Basra, S. M. A. (2020). Evaluating the integrative response of moringa leaf extract with synthetic growth promoting substances in maize under early spring conditions. South Afr. J. Bot. 132, 378–387. doi: 10.1016/j.sajb.2020.04.025
Ali, Z., Basra, S. M. A., Munir, H., Mahmood, A., and Yousaf, S. (2011). Mitigation of drought stress in maize by natural and synthetic growth promoters. J. Agric. Soc. Sci. 7, 56–62
Anjum, S. A., Wang, L. C., Farooq, M., Hussain, M., Xue, L. L., and Zou, C. M. (2011). Brassinolide application improves the drought tolerance in maize through modulation of enzymatic antioxidants and leaf gas exchange. J. Agronomy Crop Sci. 197, 177–185. doi: 10.1111/j.1439-037X.2010.00459.x
Araus, J. L., Serret, M. D., and Edmeades, G. (2012). Phenotyping maize for adaptation to drought. Front. Physiol. 3:305–305. doi: 10.3389/fphys.2012.00305
Arora, A., Sairam, R. K., and Srivastava, G. C. (2002). Oxidative stress and antioxidative system in plants. Curr. Sci. 82, 1227–1238. Arzu, K., Onder, O., Bilir, O., and Kosar, F. (2018). Application of multivariate statistical analysis for breeding strategies of spring safflower (Carthamus tinctorius L.). Turkish J. Field Crops 23, 12–19.
Bahar, A. A., Faried, H. N., Razzaq, K., Ullah, S., Akhtar, G., Amin, M., et al. (2021). Potassium-induced drought tolerance of potato by improving morpho-physiological and biochemical attributes. Agronomy 11:2573. doi: 10. 3390/agronomy11122573
Bahrami, F., Arzani, A., and Karimi, V. (2014). Evaluation of yield-based drought tolerance indices for screening safflower genotypes. Agronomy J. 106, 1219–1224. doi: 10.2134/agronj13.0387
Bates, L. S., Waldren, R. P., and Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant Soil 39, 205–207. doi: 10.1007/BF00018060
Cairns, J. E., Sonder, K., Zaidi, P. H., Verhulst, N., Mahuku, G., Babu, R., et al. (2012). Maize production in a changing climate: impacts, adaptation, and mitigation strategies. Adv. Agronomy 114, 1–58. doi: 10.1016/B978-0-12-394275- 3.00006-7
Cakir, R. (2004). Effect of water stress at different development stages on vegetative and reproductive growth of corn. Field Crops Res. 89, 1–16. doi: 10. 1016/j.fcr.2004.01.005
Cao, Y., Cai, H., Sun, S., Gu, X., Mu, Q., Duan, W., et al. (2022). Effects of drip irrigation methods on yield and water productivity of maize in Northwest China. Agric. Water Manag. 259:107227. doi: 10.1016/j.agwat.2021.107227
Dodd, I. C. (2003). Hormonal interactions and stomatal responses. J. Plant Growth Regul. 22, 32–46. doi: 10.1007/s00344-003-0023-x
El-Naggar, M. E., Abdelsalam, N. R., Fouda, M. M., Mackled, M. I., Al-Jaddadi, M. A., Ali, H. M., et al. (2020). Soil application of nano silica on maize yield and its insecticidal activity against some stored insects after the post-harvest. Nanomaterials 10:739. doi: 10.3390/nano10040739
Fan, W., Zhao, M., Li, S., Bai, X., Li, J., Meng, H., et al. (2016). Contrasting transcriptional responses of PYR1/PYL/RCAR ABA receptors to ABA or dehydration stress between maize seedling leaves and roots. BMC Plant Biol. 16:1–14. doi: 10.1186/s12870-016-0764-x
FAOSTAT, F. (2023) “Agriculture organization of the united nations statistics division,” in Economic Social Development Department (Rome). Available online at: http//faostat3.fao.org/home/E (accessed Febraury 15, 2022).
Fernandez, G. C. (1992). “Effective selection criteria for assessing plant stress tolerance,” in Proceeding of the International Symposium on Adaptation of Vegetables and Other Food Crops in Temperature and Water Stress, (Shanhua, Taiwan), 257–270.
Gamalero, E., and Glick, B. R. (2012). Ethylene and Abiotic Stress Tolerance in Plants. Berlin: Springer. doi: 10.1007/978-1-4614-0815-4_18
Gao, J., Zhang, R. H., Wang, W. B., Li, Z. W., and Xue, J. Q. (2015). Effects of drought stress on performance of photosystem II in maize seedling stage. Ying Yong Sheng Tai Xue Bao 26, 1391–1396.
Gekas, F., Pankou, C., Mylonas, I., Ninou, E., Sinapidou, E., Lithourgidis, A., et al. (2013). The use of chlorophyll meter readings for the selection of maize inbred lines under drought stress. World Acad. Sci. Eng. Technol. 7, 815–819.
Gholamin, R., and Khayatnezhad, M. (2011). The effect of end season drought stress on the chlorophyll content, chlorophyll fluorescence parameters and yield in maize cultivars. Sci. Res. Essays 6, 5351–5357. doi: 10.5897/AJMR1 1.964
Gomaa, M., Kandil, E. E., El-Dein, A. A., Abou-Donia, M. E., Ali, H. M., and Abdelsalam, N. R. (2021). Increase maize productivity and water use efficiency through application of potassium silicate under water stress. Sci. Rep. 11, 1–8. doi: 10.1038/s41598-020-80656-9
Gupta, A., Rico-Medina, A., and Caño-Delgado, A. I. (2020). The physiology of plant responses to drought. Science 368, 266–269. doi: 10.1126/science.aaz7614
Huqe, M. A. S., Haque, M. S., Sagar, A., Uddin, M. N., Hossain, M. A., Hossain, A., et al. (2021). Characterization of Maize Hybrids (Zea mays L.) for Detecting Salt Tolerance Based on Morpho-Physiological Characteristics. Ion Accumulation and Genetic Variability at Early Vegetative Stage. Plants 10:2549. doi: 10.3390/ plants10112549
Hussain, H. A., Men, S., Hussain, S., Chen, Y., Ali, S., Zhang, S., et al. (2019). Interactive effects of drought and heat stresses on morpho-physiological attributes, yield, nutrient uptake and oxidative status in maize hybrids. Sci. Rep. 9, 1–12. doi: 10.1038/s41598-019-40362-7
Kandil, E. E., Abdelsalam, N. R., Mansour, M. A., Ali, H. M., and Siddiqui, M. H. (2020). Potentials of organic manure and potassium forms on maize (Zea mays L.) growth and production. Sci. Rep. 10, 1–11. doi: 10.1038/s41598-020-65 749-9
Lobell, D. B., Burke, M. B., Tebaldi, C., Mastrandrea, M. D., Falcon, W. P., and Naylor, R. L. (2008). Prioritizing climate change adaptation needs for food security in 2030. Sci. 319, 607–610. doi: 10.1126/science.1152339
Schonfeld, M. A., Johnson, R. C., Carver, B. F., and Mornhinweg, D. W. (1988). Water relations in winter wheat as drought resistance indicators. Crop Sci. 28, 526–531. doi: 10.2135/cropsci1988.0011183X002800030021x
Shabbir, R., Javed, T., Afzal, I., Sabagh, A. E., Ali, A., Vicente, O., et al. (2021). Modern biotechnologies: Innovative and sustainable approaches for the improvement of sugarcane tolerance to environmental stresses. Agronomy 11:1042. doi: 10.3390/agronomy11061042
Tollenaar, M., and Lee, E. (2006). Dissection of physiological processes underlying grain yield in maize by examining genetic improvement and heterosis. Maydica 51:399.
Zhu, X., Xu, K., Liu, Y., Guo, R., and Chen, L. (2021). Assessing the vulnerability and risk of maize to drought in China based on the aquacrop model. Agric. Syst. 189:103040. doi: 10.1016/j.agsy.2020.10 3040
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 K AHMAD , A ULLAH , A ISLAM , MA KHAN , MS QADIR , S SALEEM , I AHMAD , ZU REHMAN , S HUSSAIN
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.