THE ARABIDOPSIS NHX1 GENE: OVEREXPRESSION AND ITS IMPACT ON SALT TOLERANCE IN TRANSGENIC PLANTS

Authors

  • OU KHAN Chief Scientist Agri. (Research) Office, Ayub Agri. Research Institute, Faisalabad, Punjab, Pakistan
  • B AHMAD Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Punjab, Pakistan
  • Z MAMOONA Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Punjab, Pakistan
  • Z IRFAN Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Punjab, Pakistan
  • A ISMAIL Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Punjab, Pakistan
  • S SALEEM Oilseeds Research Station, Khanpur, Rahim Yar Khan, Punjab, Pakistan
  • M SHAHEEN Cotton Research Station, Khanpur, Rahim Yar Khan, Punjab, Pakistan
  • MAS KHAN Directorate of Floriculture (T&R), Lahore, Punjab, Pakistan
  • M ZAFAR Sugarcane Research Institute, Faisalabad, Punjab Pakistan
  • MW BASHIR Swat Agro Chemicals, Regional Headquarter, Faisalabad

DOI:

https://doi.org/10.54112/bcsrj.v2024i1.1148

Keywords:

Abiotic Stress, Salinity, Transgenic Plant, Atnhx1 Antiporter, Gene, Overexpression, Salt Tolerance, Alfalfa, Wheat, Barley, Fescue, Petunia, Soybean, and Ionic Balance

Abstract

Abiotic stresses, such as salinity, negatively impact crop growth, development and overall production. The discovery and operational confirmation of new genes will provide the framework for successful genetic engineering techniques to increase crop plants' resistance to salinity stress. The most effective method for maintaining ionic balance in plants under stress due to saltiness is provided by the membrane and vacuolar Na+/H+ counter transporter. The function of AtNHX1, the initially identified vacuolar antiporter from more advanced crops, was extensively researched. In this article, we will review the possible function of the Arabidopsis NHX1 gene that is responsible for salt tolerance and its transformation into Wheat, Barley, Poplar, Fescue, Petunia hybrid, Alfalfa & Soybean. Reason to engineer higher plants' genomes using Arabidopsis NHX1 genes to provide food sustainably in salinity-affected locations.

Downloads

Download data is not yet available.

References

Moghaieb, R. E., Sharaf, A. N., Soliman, M. H., El-Arabi, N. I., & Momtaz, O. A. (2014). An efficient and reproducible protocol for the production of salt tolerant transgenic wheat plants expressing the Arabidopsis AtNHX1 gene. GM crops & food, 5(2), 132-138.

Xu, K., Hong, P., Luo, L., & Xia, T. (2009). Overexpression of AtNHX1, a vacuolar Na+/H+ antiporter from Arabidopsis thalina, in Petunia hybrida enhances salt and drought tolerance. Journal of plant biology, 52, 453-461.

Zhao, J., Zhi, D., Xue, Z., Liu, H., & Xia, G. (2007). Enhanced salt tolerance of transgenic progeny of tall fescue (Festuca arundinacea) expressing a vacuolar Na+/H+ antiporter gene from Arabidopsis. Journal of plant physiology, 164(10), 1377-1383.

Li, T., Zhang, Y., Liu, H., Wu, Y., Li, W., & Zhang, H. (2010). Stable expression of Arabidopsis vacuolar Na+/H+ antiporter gene AtNHX1, and salt tolerance in transgenic soybean for over six generations. Chinese Science Bulletin, 55, 1127-1134.

Adem, G. D., Roy, S. J., Plett, D. C., Zhou, M., Bowman, J. P., & Shabala, S. (2015). Expressing AtNHX1 in barley (Hordium vulgare L.) does not improve plant performance under saline conditions. Plant growth regulation, 77, 289-297.

Stritzler, M., Elba, P., Berini, C., Gomez, C., Ayub, N., & Soto, G. (2018). High-quality forage production under salinity by using a salt-tolerant AtNXH1-expressing transgenic alfalfa combined with a natural stress-resistant nitrogen-fixing bacterium. Journal of biotechnology, 276, 42-45.

WANG, X. S., REN, H. L., WEI, Z. W., WANG, Y. W., & REN, W. B. (2017). Effects of neutral salt and alkali on ion distributions in the roots, shoots, and leaves of two alfalfa cultivars with differing degrees of salt tolerance. Journal of Integrative Agriculture, 16(8), 1800-1807.

Amirinejad, A. A., Sayyari, M., Ghanbari, F., & Kordi, S. (2017). Salicylic acid improves salinity-alkalinity tolerance in pepper (Capsicum annuum L.). Advances in Horticultural Science, 31(3), 157-164.

Wang, J., Zhang, Y., Yan, X., & Guo, J. (2020). Physiological and transcriptomic analyses of yellow horn (Xanthoceras sorbifolia) provide important insights into salt and saline-alkali stress tolerance. PLoS One, 15(12), e0244365.

Chen, Y., Li, Y., Sun, P., Chen, G., & Xin, J. (2017). Interactive effects of salt and alkali stresses on growth, physiological responses and nutrient (N, P) removal performance of Ruppia maritima. Ecological Engineering, 104, 177-183.

Dhankher, O. P., & Foyer, C. H. (2018). Climate resilient crops for improving global food security and safety. Plant, Cell & Environment, 41(5), 877-884.

Ahanger, M. A., Akram, N. A., Ashraf, M., Alyemeni, M. N., Wijaya, L., & Ahmad, P. (2017). Plant responses to environmental stresses—from gene to biotechnology. AoB Plants, 9(4), plx025.

Caldentey, M. B. R. (2019). Structure and regulation of NHX exchangers in the uptake of potassium into the vacuoles of arabidopsis thaliana (Doctoral dissertation, Universidad de Sevilla).

Zhang, H. X., & Blumwald, E. (2001). Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nature biotechnology, 19(8), 765-768.

He, C., Yan, J., Shen, G., Fu, L., Holaday, A. S., Auld, D., ... & Zhang, H. (2005). Expression of an Arabidopsis vacuolar sodium/proton antiporter gene in cotton improves photosynthetic performance under salt conditions and increases fiber yield in the field. Plant and cell physiology, 46(11), 1848-1854.

Zhang, H. X., Hodson, J. N., Williams, J. P., & Blumwald, E. (2001). Engineering salt-tolerant Brassica plants: characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation. Proceedings of the National Academy of Sciences, 98(22), 12832-12836.

Apse, M. P., Aharon, G. S., Snedden, W. A., & Blumwald, E. (1999). Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science, 285(5431), 1256-1258.

Rani, S. J., & Usha, R. (2013). Transgenic plants: Types, benefits, public concerns and future. Journal of Pharmacy Research, 6(8), 879-883.

Bradshaw, H. D., Ceulemans, R., Davis, J., & Stettler, R. (2000). Emerging model systems in plant biology: poplar (Populus) as a model forest tree. Journal of Plant Growth Regulation, 19(3), 306-313.

Taylor, G. (2002). Populus: Arabidopsis for forestry. Do we need a model tree?. Annals of botany, 90(6), 681-689.

Ruan, Y. L., Jin, Y., Yang, Y. J., Li, G. J., & Boyer, J. S. (2010). Sugar input, metabolism, and signaling mediated by invertase: roles in development, yield potential, and response to drought and heat. Molecular Plant, 3(6), 942-955.

Tester, M., & Davenport, R. (2003). Na+ tolerance and Na+ transport in higher plants. Annals of botany, 91(5), 503-527.

Bassil, E., & Blumwald, E. (2014). The ins and outs of intracellular ion homeostasis: NHX-type cation/H+ transporters. Current opinion in plant biology, 22, 1-6.

Bohnert, H. J., Nelson, D. E., & Jensen, R. G. (1995). Adaptations to environmental stresses. The plant cell, 7(7), 1099.

Zhu, J. K. (2001). Plant salt tolerance. Trends in plant science, 6(2), 66-71.

Sleper, D. A., & West, C. P. (1996). Tall fescue. Cool‐season forage grasses, 34, 471-502.

Chen, L., Liu, Q. Q., Gai, J. Y., Zhu, Y. L., Yang, L. F., & Wang, C. (2011). Effects of nitrogen forms on the growth and polyamine contents in developing seeds of vegetable soybean. Journal of plant nutrition, 34(4), 504-521.

Nass, R., & Rao, R. (1998). Novel localization of a Na+/H+ exchanger in a late endosomal compartment of yeast: implications for vacuole biogenesis. Journal of Biological Chemistry, 273(33), 21054-21060.

Orlowski, J., & Grinstein, S. (1997). Na+/H+ exchangers of mammalian cells. Journal of Biological Chemistry, 272(36), 22373-22376.

Counillon, L., & Pouysségur, J. (2000). The expanding family of eucaryotic Na+/H+ exchangers. Journal of Biological Chemistry, 275(1), 1-4.

Nass, R., Cunningham, K. W., & Rao, R. (1997). Intracellular sequestration of sodium by a novel Na+/H+ exchanger in yeast is enhanced by mutations in the plasma membrane H+-ATPase: insights into mechanisms of sodium tolerance. Journal of Biological Chemistry, 272(42), 26145-26152.

Gaxiola, R. A., Rao, R., Sherman, A., Grisafi, P., Alper, S. L., & Fink, G. R. (1999). The Arabidopsis thaliana proton transporters, AtNHX1 and Avp1, can function in cation detoxification in yeast. Proceedings of the National Academy of Sciences, 96(4), 1480-1485.

Quintero, F. J., Blatt, M. R., & Pardo, J. M. (2000). Functional conservation between yeast and plant endosomal Na+/H+ antiporters. FEBS letters, 471(2-3), 224-228.

Ohta, M., Hayashi, Y., Nakashima, A., Hamada, A., Tanaka, A., Nakamura, T., & Hayakawa, T. (2002). Introduction of a Na+/H+ antiporter gene from Atriplex gmelini confers salt tolerance to rice. FEBS letters, 532(3), 279-282.

Jiang, C., Zheng, Q., Liu, Z., Xu, W., Liu, L., Zhao, G., & Long, X. (2012). Overexpression of Arabidopsis thaliana Na+/H+ antiporter gene enhanced salt resistance in transgenic poplar (Populus× euramericana ‘Neva’). Trees, 26, 685-694.

Barnes, R. F. (2018). Importance and problems of tall fescue. In Biotechnology in tall fescue improvement (pp. 1-12). CRC Press.

Spangenberg G, Wang ZY, Portykus I. Biotechnology in forage and turf grass improvement. In: Frankel R, Grossman M, Linskens HF, Maliga P, Riley R, editors. Monographs on theoretical and applied genetics. Berlin, Heidelberg, New York: Springer; 1998. p. 127–146.

Downloads

Published

2024-09-30

How to Cite

KHAN , O., AHMAD , B., MAMOONA , Z., IRFAN , Z., ISMAIL , A., SALEEM , S., SHAHEEN , M., KHAN , M., ZAFAR , M., & BASHIR , M. (2024). THE ARABIDOPSIS NHX1 GENE: OVEREXPRESSION AND ITS IMPACT ON SALT TOLERANCE IN TRANSGENIC PLANTS. Biological and Clinical Sciences Research Journal, 2024(1), 1148. https://doi.org/10.54112/bcsrj.v2024i1.1148

Most read articles by the same author(s)

1 2 3 > >>