Hybrid ZnO–MnO₂ Nanomaterials for Glucose Detection: A Review of Recent Progress
DOI:
https://doi.org/10.54112/bcsrj.v6i5.1769Keywords:
Nanostructure, Diabetes Mellitus, Glucose, Sensors, SensitivityAbstract
Accurate and timely glucose detection is critical in biomedical diagnostics, particularly for effective management of diabetes mellitus. Traditional glucose sensors often face challenges in sensitivity, selectivity, and stability, necessitating the development of novel materials. Objective: This review aims to critically analyze the recent advances in the development of zinc oxide (ZnO) and manganese dioxide (MnO₂) nanocomposite-based glucose sensors, emphasizing their potential in improving sensor performance. Methods: A comprehensive literature review was conducted focusing on studies published over the past decade. Sources were selected from peer-reviewed journals indexed in databases such as PubMed, Scopus, and Web of Science. Key aspects reviewed include synthesis strategies (e.g., hydrothermal, sol-gel, chemical bath deposition), structural and morphological analysis via techniques such as SEM, TEM, and XRD, and electrochemical evaluation through methods including cyclic voltammetry and chronoamperometry. Comparative performance metrics like sensitivity (µA·mM⁻¹·cm⁻²), detection limit (µM), linear response range, and response time (s) were extracted and analyzed. Results: ZnO-MnO₂ nanocomposites demonstrated notable improvements in glucose sensor performance, offering enhanced electron transfer kinetics, greater surface area for enzyme immobilization, and improved biocompatibility. Sensitivities ranged up to 3670 µA·mM⁻¹·cm⁻², with detection limits as low as 0.3 µM and response times below 5 seconds. Composite formation methods significantly influenced morphology and, consequently, the electrochemical behavior of sensors. Conclusion: ZnO-MnO₂ nanocomposites hold considerable promise as materials for high-performance glucose sensing. Their synergistic electrochemical properties enable superior analytical characteristics. However, challenges remain in terms of long-term stability, reproducibility, and cost-effective scale-up. Future research should focus on integration into wearable platforms, real-time monitoring, and non-enzymatic detection approaches.
Downloads
References
Power, A. C., & Morrin, A. (2013). Electroanalytical sensor technology (pp. 141-178). Rijeka, Croatia: InTech.
Hughes, W.S. (1922) the potential difference between glass and electrolytes in contact with the glass. J. Am. Chem. Soc. 44, 2860–2867.
Griffin, E.G. and Nelson, J.M. (1916) the influence of certain substances on the activity of invertase. J. Am. Chem. Soc. 38, 722–730.
Nelson, J.M. and Griffin, E.G. (1916) Adsorption of invertase. J. Am. Chem. Soc. 38, 1109–1115.
Heineman, W.R. and Jensen, W.B. (2006) Leland C. Clark Jr. (1918–2005). Biosensor. Bio electron. 21, 1403–1404.
Guilbault, G.G. and Montalvo, Jr, J.G. (1969) Urea-specific enzyme electrode. J. Am. Chem. Soc. 91, 2164–2165.
Jr. L. C. Clark. and C. Lyons, Electrode system for continuous monitoring in cardiovascular surgery, Ann. N. Y. Acad. Sci. 102, 29-45 (1962).
G. S. Wilson, Y. Hu, Enzyme based nano-sensors for in-vivo measurement, in Chem. Rev., 100, 2693-2704 (2002).
B. R. Eggins, Chemical Sensors and Biosensors; John Wiley & Sons: New York, (2002).
F. Patolsky, C. M. Lieber, Nanowires nanosensors, in Materials Today, 8, 20-28 (2005).
Jr. L. C. Clark, Monitor and control of blood and tissue oxygen tensions, in Trans. Am. Art if. Inter. Organs 2, 41-57 (1956).
Schedin, F., A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselove. 2007. Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6: 652–655.
Dzyadevych, S.V.; Arkhypova, V.N.; Soldatkin, A.P.; El'skaya, A.V.; Martelet, C.; JaffrezicRenault, N. Amperometric enzyme biosensors: Past, present and future. IRBM 2008, 29, 171-180.
Geyssant, A.; Dormois, D.; Barthelemy, J.C.; Lacour, J.R. Lactate determination with the lactate analyser LA 640: A critical study. Scand. J. Clin. Lab. Investig. 1985, 45, 145–149.
Cass, A.E.; Davis, G.; Francis, G.D.; Hill, H.A.; Aston, W.J.; Higgins, I.J.; Plotkin, E.V.; Scott, L.D.; Turner, A.P. Ferrocene-mediated enzyme electrode for amperometric determination of glucose. Anal. Chem. 1984, 56, 667–671. (CrossRef)
Liedberg, W.; Nylander, C.; Lundstrm, I. Surface plasmon resonance for gas detection and biosensing. Sens. Actuators A Phys. 1983, 4, 299–304.
Turner, A.P.F. Biosensors: Sense and sensibility. Chem. Soc. Rev. 2013, 42, 3184–3196. (CrossRef) (PubMed) 36. Nguyen, H.H.; Lee, S.H.; Lee, U.J.; Fermin, C.D.; Kim, M. Immobilized enzymes in biosensor applications. Materaterials 2019, 12, 121. (CrossRef)
Nguyen, H.H.; Lee, S.H.; Lee, U.J.; Fermin, C.D.; Kim, M. Immobilized enzymes in biosensor applications. Materaterials 2019, 12, 121. (CrossRef)
Shukla, S.K.; Govender, P.P.; Tiwari, A. Polymeric micellar structures for biosensor technology. In Advances in Biomembranes and Lipid Self-Assembly, 1st ed.; Iglic, A., Kulkarni, C.V., Rappolt, M., Eds.; Academic Press: Cambridge, MA, USA, 2016; pp. 143–161.
Morrison, D.W.; Dokmeci, M.R.; Demirci, U.; Khademhosseini, A. Clinical Applications of Micro-and Nanoscale Biosensors; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2007.
Justino, C.I.L.; Freitas, A.C.; Pereira, R.; Duarte, A.C.; Santos, T.A.P.R. Recent developments in recognition elements for chemical sensors and biosensors. Trends Anal. Chem. 2015, 68, 2. (CrossRef)
Lim, S.A.; Ahmed, M.U. Introduction to food biosensors. In Food Chemistry, Function and Analysis, 1st ed.; Ahmed, M.U., Zourob, M., Tamiya, E., Eds.; Royal Society of Chemistry: Cambridge, UK, 2016; pp. 1–21.
Perumal, V.; Hasim, U. Advances in biosensors: Principle, architecture and applications. J. Appl. Biomed. 2014, 12, 1–15. (CrossRef)
Liu, H.; Ge, J.; Ma, E.; Yang, L. Advanced biomaterials for biosensor and theranostics. In Biomaterials in Translational Medicine, 1st ed.; Yang, L., Bhaduri, S., Webster, T., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 213–255.
Cordeiro, C.A.; Sias, A.; Koster, T.; Weterink, B.H.C.; Cremers, T.I.F.H. In vivo “real-time” monitoring of glucose in the brain with an amperometric enzyme-based biosensor based on gold coated tungsten (W-Au) microelectrodes. Sens. Actuators B Chem. 2018, 263, 605–613. (CrossRef)
Ondes, B.; Akpinar, F.; Uygun, M.; Muti, M.; Uygun, D.A. High stability potentiometric urea biosensor based on enzyme attached nanoparticles. Microchemi. J. 2021, 160, 105667. (CrossRef)
Schroeder, W.H.; Cavacini, L. Structure and function of immunoglobulins. J. Allergy Clin. Immunol. 2010, 125, S41–S52. (CrossRef) (PubMed) Sensors 2021, 21, 1109 29 of 35
Malhotra, B.D.; Ali, M.A. Nanomaterials in biosensors: Fundamentals and applications. In Nanomaterials for Biosensors, 1st ed.; Malhotra, B.D., Ali, M.A., Eds.; Elsevier: Cambridge, MA, USA, 2017; pp. 1–73. Sensors 2021, 21, 1109 30 of 35
Shanker, A.; Lee, K.; Kim, J. Synthetic hybrid biosensors. In Encyclopedia of Molecular Cell Biology and Molecular Medicine, 2nd ed.; Meyers, R.A., Ed.; Wiley-VCH Verlag Gmbh & Co. KGaA: Weinheim, Germany, 2014; pp. 1–36.
Grieshaber, D.; MacKenzie, R.; Janos Vörös, J.; Reimhult, E. Electrochemical biosensors—Sensor principles and architectures. Sensors 2008, 8, 1400–1458. (CrossRef)
Chaubey, A.; Malhotra, B.D. Mediated biosensors. Biosens. Bioelectron. 2002, 17, 441–456. (CrossRef)
Pisoschi, A.M. Potentiometric biosensors: Concept and analytical applications–An editorial. Biochem. Anal. Biochem. 2016, 5, 19–20. (CrossRef)
Borgmann, S.; Schulte, A.; Neugebauer, S.; Schuhmann, W. Amperometric biosensors. In Advances in Electrochemical Science and Engineering, 1st ed.; Alkire, R.C., Kolb, D.M., Jacek Lipkowski, J., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2011; pp. 1–84.
Alaejos, M.S.; Montelongo, F.J.G. Application of amperometric biosensors to the determination of vitamins and α-amino acids. Chem. Rev. 2004, 104, 3239–3266. (CrossRef) (PubMed)
Dzyadevych, S.; Renault, N.J. Conductometric biosensors. In Biological Identification, 1st ed.; Schaudies, R.P., Ed.; Elsevier: Cambridge, MA, USA, 2014; pp. 153–193.
Radhakrishnan, R.; Suni, I.I.; Bever, C.S.; Hammock, B.D. Impedance biosensors: Applications to sustainability and remaining technical challenges. ACS Sustain. Chem. Eng. 2014, 2, 1649–1655. (CrossRef) (36). Touhami, A. Biosensors and nanobiosensors: Design and applications. In Nanomedicine, 1st ed.; Seifalian, A., De Mel, A., Kalaskar, D.M., Eds.; One Central Press: Cheshire, UK, 2014; pp. 374–403.
Lazcka, O.; Campo, F.J.D.; Munoz, F.X. Pathogen detection: A perspective of traditional methods and biosensors. Biosens. Bioelectron. 2007, 22, 1205–1217. (CrossRef) (PubMed)
Chen, C.; Wang, J. Optical biosensors: An exhaustive and comprehensive review. Analyst 2020, 145, 1605–1628. (CrossRef) (PubMed)
Demchenko, A.P. Fluorescence detection techniques. In Introduction to Fluorescence Sensing, 1st ed.; Springer: Dordrecht, Netherlands, 2009; pp. 65–118.
Liu, G.; Feng, D.Q.; Qian, Y.; Wang, W.; Zhu, J.J. Construction of FRET biosensor for off-on detection of lead ions based on carbon dots and gold nanorods. Talanta 2019, 201, 90–95. (CrossRef)
Dippel, A.B.; Anderson, W.A.; Evans, R.S.; Deutsch, S.; Hammond, M.C. Chemiluminescent biosensors for detection of second messenger cyclic di-GMP. ACS Chem. Biol. 2018, 13, 1872–1879.
Luo, M.; Chen, X.; Zhou, G.; Xiang, X.; Chen, L.; Jia, X.; He, Z. Chemiluminescence biosensors for DNA detection using graphene oxide and a horseradish peroxidase-mimicking DNAzyme. Chem. Commun. 2012, 48, 1126–1128. (CrossRef)
Solaimuthu, A.; Vijayan, A.N.; Murali, P.; Korrapati, P.S. Nano-biosensors and their relevance in tissue engineering. Curr. Opin. Biomed. Eng. 2020, 13, 84–93. (CrossRef)
Damborsky, P.; Svitel, J.; Katrlik, J. Optical biosensors. Essays Biochem. 2016, 60, 91–100.
Mansouri, M.; Fathi, F.; Jalili, R.; Shoeibie, S.; Dastmalchi, S.; Khataee, A.; Rashidi, M.R. SPR enhanced DNA biosensor for sensitive detection of donkey meat adulteration. Food Chem. 2020, 331, 127163. (CrossRef)
Zandieh, M.; Hosseini, S.N.; Vossoughi, M.; Khatami, M.; Abbasian, S.; Moshaii, A. Label-free and simple detection of endotoxins using a sensitive LSPR biosensor based on silver nanocolumns. Anal. Biochem. 2018, 548, 96–101. (CrossRef)
Srivastava, K.R.; Awasthi, S.; Mishra, P.K.; Srivastava, P.K. Biosensors/molecular tools for detection of waterborne pathogens. In Waternorne Pathogens: Detection and Treatment, 1st ed.; Prasad, M.N.V., Grobelak, A., Eds.; Butterworth-Heinemann: Cambridge, MA, USA, 2020; pp. 237–277.
Leung, A.; Shankar, P.M.; Mutharasan, R. A review of fiber-optic biosensors. Sens. Actuators B Chem. 2007, 125, 688–703. (CrossRef)
Monk, D.J.; Walt, D.R. Optical fiber-based biosensors. Anal. Bioanal. Chem. 2004, 379, 931–945. (CrossRef) (PubMed)
Huang, J.; Liu, Y.; Zhang, P.; Li, Y.; Ding, L. A temperature-triggered fiber optic biosensor based on hydrogel-magnetic immobilized enzyme complex for sequential determination of cholesterol and glucose. Biochem. Eng. J. 2017, 125, 123–128. (CrossRef)
Karim, R.A.; Reda, Y.; Fattah, A.A. Review—Nanostructured materials-based nanosensors. J. Electrochem. Soc. 2020, 167, 037554. (CrossRef)
Van den Berg, B.; Wain, R.; Dobson, C.M.; Ellis, R.J. Macromolecular crowding perturbs protein refolding kinetics: Implications for protein folding inside the cell. EMBO J. 2000, 19, 3870–3875. (CrossRef) (PubMed)
Martinkova, P.; Kostelnik, A.; Valek, T.; Pohanka, M. Main streams in the construction of biosensors and their applications. Int. J. Electrochem. Sci. 2017, 12, 7386–7403. (CrossRef0
De Castro, A.C.; Alves, L.M.; Siquieroli, A.C.; Madurro, J.M.; Brito-Madurro, A.G. Label-free electrochemical immunosensor for detection of oncomarker CA125 in serum. Microchem. J. 2020, 155, 104746.
Maduraiveeran, G.; Sasidharan, M.; Ganesan, V. Electrochemical sensor and biosensor platforms based on advanced nanomaterials for biological and biomedical applications. Biosens. Bioelectron. 2018, 103, 113–129.
Li, Y.; Schluesener, H.J.; Xu, S. Gold nanoparticle-based biosensors. Gold Bull. 2010, 43, 29–41. (CrossRef)
Vidotti, M.; Carvalhal, R.F.; Mendes, R.K.; Ferreira, D.C.M.; Kubota, L.T. Biosensors based on gold nanostructures. J. Braz. Chem. Soc. 2011, 22, 3–20.
Shi, S.; Wu, H.; Zhang, L.; Wang, S.; Xiong, P.; Qin, Z.; Chu, M.; Liao, J. Gold nanoparticles based electrochemical sensor for sensitive detection of uranyl in natural water. J. Electroanal. Chem. 2021, 880, 114884.
Niu, X.F.; Zhong, Y.; Chen, R.; Wang, F.; Liu, Y.; Luo, D. A “turn-on” fluorescence sensor for Pb2+ detection based on graphene quantum dots and gold nanoparticles. Sens. Actuators B Chem. 2018, 255, 1577–1581.
Amiripour, F.P.; Ghasemi, S.; Azizi, S.N. A novel non-enzymatic glucose sensor based on gold-nickel bimetallic nanoparticles doped aluminosilicate framework prepared from agro-waste material. Appl. Surf. Sci. 2021, 537, 147827.
El-Dessouky, R.; Georges, M.; Azzazy, H.M.E. Silver nanostructures: Properties, synthesis, and biosensor applications. In Functional Nanoparticles for Bioanalysis, Nanomedicine, and Bioelectronic Devices; ACS Symposium series, 1112; Hepel, M., Zhong, C.-J., Eds.; ACS: Washington, DC, USA, 2012; Volume 1, pp. 359–404.
Loiseau, A.; Asila, V.; Aullen, G.B.; Lam, M.; Salmain, M.; Boujday, S. Silver-based plasmonic nanoparticicles for and their uses in biosensing. Biosensors 2019, 9, 78.
Malekzad, H.; Zangabad, P.S.; Mirshekari, H.; Karimi, M.; Hamblin, M.R. Noble metal nanoparticles in biosensors: Recent studies and applications. Nanotech. Rev. 2017, 6, 301–329.
Rivero, P.J.; Urrutia, A.; Goicoechea, J.; Arregui, F.J. Optical fiber humidity sensors based on localized surface plasmon resonance (LSPR) and lossy-mode resonance (LMR) in overlays loaded with silver nanoparticles. Sens. Actuators B Chem. 2012, 173, 244–249.
Basiri, S.; Mehdinia, A.; Jabbari, A. A sensitive triple colorimetric sensor based on plasmonic response quenching of green synthesized silver nanoparticles for determination of Fe2+, hydrogen peroxide, and glucose. Colloids Surf. A Physicochem. Eng. Asp. 2018, 545, 138–146.
Chen, P.L.; Liu, I.P.; Chen, W.C.; Niu, J.S.; Liu, W.C. Study of a platinum nanoparticle (Pt NP)/amorphous In-Ga-Zn-O (A-IGZO) thin-film-based ammonia gas sensor. Sens. Actuators B Chem. 2020, 322, 128592.
Imaran, H.; Vaishali, K.; Francy, S.A.; Manikandan, P.N.; Dharuman, V. Platinum and zinc oxide modified carbon nitride electrode as non-enzymatic highly selective and reusable electrochemical diabetic sensor in human blood. Bioelectrochemistry 2021, 137, 107645.
Phan, T.T.V.; Huynh, T.C.; Manivasagan, P.; Mondal, S.; Oh, J. An up-to-date review on biomedical applications of palladium nanoparticles. Nanomater 2020, 10, 66.
Zhang, Y.; Huang, B.; Ye, J.; Ye, J. A sensitive and selective amperometric hydrazine sensor based on palladium nanoparticles loaded on cobalt-wrapped nitrogen-doped carbon nanotubes. J. Eelctroanal. Chem. 2017, 801, 215–223.
Mohammadi, M.M.; Kumar, A.; Liu, J.; Liu, Y.; Thundat, T.; Swihart, M.T. Hydrogen sensing at room temperature using flame-synthesized palladium-decorated crumpled reduced graphene oxide nanocomposites. ACS Sens. 2020, 5, 2344–2350.
Afzali, M.; Mostafavi, A.; Nekooie, R.; Jahromi, Z. A novel voltammetric sensor based on palladium nanoparticles/carbon nanofibers/ionic liquid modified carbon paste electrode for sensitive determination of anti-cancer drug pemetrexed. J. Mol. Liq. 2019, 282, 456–465.
Li, J.H.; Tang, J.X.; Wei, L.; He, S.J.; Ma, L.Q.; Shen, W.C.; Kang, F.Y.; Huang, Z.H. Preparation and performance of electrochemical glucose sensors based on copper nanoparticles loaded on flexible graphite sheet. New Carbon Mater. 2020, 35, 410–419.
Roushani, M.; Dizajdizi, B.Z. Development of nonenzymatic hydrogen peroxide sensor based on catalytic properties of copper nanoparticles/Rutin/MWCNTs/IL/Chit. Catal. Commun. 2015, 69, 133–137.
Zhu, T.; Wang, X.; Chang, W.; Zhang, Y.; Maruyama, T.; Luo, L.; Zhao, X. Green fabrication of Cu/rGO decorated SWCNT buckypaper as a flexible electrode for glucose detection. Mater. Sci. Eng. C 2021, 120, 111757.
Shi, X.; Gu, W.; Li, B.; Chen, N.; Zhao, K.; Xian, Y. Enzymatic biosensors based on the use of metal oxide nanoparticles. Microchim. Acta 2014, 181, 1–22.
Hashem, M.; Saion, E.; Al-Hada, N.M.; Kamari, H.M.; Shaari, A.H.; Talib, Z.A.; Paiman, S.B.; Kamarudeen, M.A. Fabrication and characterization of semiconductor nickel oxide (NiO) nanoparticles manufactured using a facile thermal treatment. Results Phys. 2016, 6, 1024–1030.
Wang, B.; Luo, Y.; Gao, L.; Liu, B.; Duan, G. High-performance field-effect transistor glucose biosensors based on bimetallic Ni/Cu metal-organic frameworks. Biosens. Bioelectron. 2021, 171, 112736. (CrossRef)
Kamyabi, M.A.; Moharramnezhad, M. A highly sensitive ECL platform based on GOD and NiO nanoparticle decorated nickel foam for determination of glucose in serum samples. Anal. Methods 2020, 12, 1670–1678.
Bhargava, R.; Khan, S.; Ahmad, N.; Ansari, M.M.N. Investigation of structural, optical and electrical properties of Co3O4 nanoparticles. AIP Conf. Proc. 2018, 1953, 030034.
Hu, F.; Liu, T.; Pang, J.; Chu, Z.; Jin, W. Facile preparation of porous Co3O4 nanocubes for directly screen-printing an ultrasensitive glutamate biosensor microchip. Sens. Actuators B Chem. 2020, 306, 127587. (CrossRef)
Ali, A.; Israr-Qadir, M.; Wazir, Z.; Tufail, M.; Ibupoto, Z.H.; Jamil-Rana, S.; Atif, M.; Khan, S.A.; Willande, M. Cobalt oxide magnetic nanoparticles–chitosan nanocomposite based electrochemical urea biosensor. Indian J. Phys. 2014, 89, 331–336.
Zhao, J.; Fu, C.; Huang, C.; Zhang, S.; Wang, F.; Zhang, Y.; Zhang, L.; Ge, S.; Yu, J. Co3O4 -Au polyhedron mimic peroxidase- and cascade enzyme-assisted cycling process-based photoelectrochemical biosensor for monitoring of miRNA-141. Chem. Eng. J. 2021, 406, 126892.
Santos, T.A.P.R. Sensors and biosensors based on magnetic nanoparticles. TrAC Trends Anal. Chem. 2014, 62, 28–36.
Haun, J.B.; Yoon, T.J.; Lee, H.; Weissleder, R. Magnetic nanoparticle biosensors. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2010, 2, 291–304.
Devakota, J.; Wingo, J.; Mai, T.T.T.; Nguyen, X.P.; Huong, N.T.; Mukherjee, P.; Srikanth, H.; Phan, M.H. A highly sensitive magnetic biosensor for detection and quantification of anticancer drugs tagged to superparamagnetic nanoparticles. J. Appl. Phys. 2014, 115, 503.
Li, T.; Jin, L.; Feng, K.; Yang, T.; Yue, X.; Wu, B.; Ding, S.; Liang, X.; Huang, G.; Zhang, J. A novel low-field NMR biosensor based on dendritic superparamagnetic iron oxide nanoparticles for the rapid detection of Salmonella in milk. LWT 2020, 133, 110149.
Vukojevic, V.; Djurdjic, S.; Ognjanovic, M.; Fabian, M.; Samphao, A.; Kalcher, K.; Stankovic, D.M. Enzymatic glucose biosensor based on manganese dioxide nanoparticles decorated on graphene nanoribbons. J. Electroanal. Chem. 2018, 823, 610–616.
Xu, C.X.; Yang, C.; Gu, B.X.; Fang, S.J. Nanostructured ZnO for biosensing applications. Chin. Sci. Bull. 2013, 58, 2563–2566.
Bhati, V.S.; Hojamberdiev, M.; Kumar, M. Enhanced sensing performance of ZnO nanostructures-based gas sensors: A review. Energy Rep. 2020, 6, 46–62.
Hjiri, M.; Bahanan, F.; Aida, M.S.; El Mir, L.; Neri, G. High performance CO gas sensor based on ZnO nanoparticles. J. Inorg. Organomet. Polym. 2020, 30, 4063–4071.
Borhaninia, A.; Nikfarjam, A.; Salehifar, N. Gas sensing properties of SnO2 nanoparticles mixed with gold nanoparticles. Trans. Nonferrous Met. Soc. 2017, 27, 1777–1784.
Kolmakov, V.; Zhang, Y.; Cheng, G.; Moskovits, M. Detection of CO and O2 using tin oxide nanowire sensors. Adv. Mater. 2003, 15, 997–1000.
Viter, R.; Tereshchenko, A.; Smyntyna, V.; Ogorodniichuk, J.; Starodub, N.; Yakimova, R.; Khranovskyy, V.; Ramanavicius, A. Toward development of optical biosensors based on photoluminescence of TiO2 nanoparticles for the detection of Salmonella. Sens. Actuators B Chem. 2017, 252, 95–102.
Rashmi, B.N.; Harlapur, S.F.; Ravikumar, C.R.; Avinash, B.; Gurushantha, K.; Divakara, M.B.; Santosh, M.S.; Veena, K. MoO3 nanoparticles based electrodes as novel electrochemical sensors for the detection of H2O2 . Mater. Today Proc. 2020.
Morkoç H, Özgür Ü. Zinc Oxide: Fundamentals, Materials and Device Technology. Wiley; 2009. General properties of ZnO; pp. 1–76.
Coleman V, Jagadish C. Basic properties and applications of ZnO. Zinc Oxide Bulk, Thin Films and Nanostructures: Processing, Properties, and Applications. 2006:1–20.
Klingshirn CF, Waag A, Hoffmann A, Geurts J. Zinc Oxide: From Fundamental Properties Towards Novel Applications. Springer Science & Business Media; Berlin, Germany: 2010. p. 120.
Bauer RS. Surfaces and Interfaces: Physics and Electronics. Elsevier; NY, USA: 2012. p. 132.
Yufei Z, Zhiyou G, Xiaoqi G, Dongxing C, Yunxiao D, Hongtao Z. First-principles of wurtzite ZnO (0001) and (0001) surface structures. J. Semiconductors. 2010;31(8):082001.
Wang ZL. Zinc oxide nanostructures: growth, properties and applications. J. Phys. Condens. Matter. 2004;16(25):R829. .
Yakimova R, Selegård L, Khranovskyy V, Pearce R, Lloyd Spetz A, Uvdal K. ZnO materials and surface tailoring for biosensing. Front. Biosci. 2012;4(1):254–278. doi: 10.2741/e374.
Choi A, Kim K, Jung H-I, Lee SY. ZnO nanowire biosensors for detection of biomolecular interactions in enhancement mode. Sensors Actuators B Chem. 2010;148(2):577–582.
Wang ZL. Nanostructures of zinc oxide. Mater. Today. 2004;7(6):26–33.
Anderson J, Chris GVDW. Fundamentals of zinc oxide as a semiconductor. Rep. Prog. Phys. 2009;72(12):126501.
Ahmad M, Pan C, Gan L, Nawaz Z, Zhu J. Highly sensitive amperometric cholesterol biosensor based on pt-incorporated fullerene-like ZnO nanospheres. J. Phys. Chem. C. 2010;114(1):243–250.
Tak M, Gupta V, Tomar M. Zinc oxide-multiwalled carbon nanotubes hybrid nanocomposite based urea biosensor. J. Mater. Chem. B. 2013;1(46):6392–6401. doi: 10.1039/c3tb20935k.
Shao, Y., J. Wang, H. Wu, J. Liu, I. A. Aksay, and Y. Lin. 2010. Graphene based electrochemical sensors and biosensors: A review. Electroanalysis 22: 1027–1036.
Wang, X.; Zhou, J.; Song, J.; Liu, J.; Xu, N.; Wang, Z.L. Piezoelectric Field Effect Transistor and Nano force Sensor Based on a Single ZnO Nanowire. Nano Lett. 2006, 6, 2768–2772.
Tak, M.; Gupta, V.; Tomar, M. Flower-like ZnO nanostructure based electrochemical DNA biosensor for bacterial meningitis detection. Bio sensor. Bio electron. 2014, 59, 200–207.
Solanki, P. R.; Kaushik, A.; Agrawal, V. V.; Malhotra, B. D. Nano structured metal oxide-based bio sensors. NPG Asia Mater. 2011, 3, 17.
Sadeghi, R.; Karimi-Maleh, H.; Bahari, A.; Taghavi, M. A novel biosensor based on ZnO nano particle/ 1, 3-dipropy imidazolium bromide ionic liquid-modified carbon past electrode for square-wave Volta metric determination of epinephrine. Phys. Chem. Liq. 2013, 51, 704–714.
Gu, B.; Xu, C.; Yang, C.; Liu, S.; Wang, M. ZnO quantum dot labeled immune sensor for carbohydrate antigen 19–9. Biosens. Bioelectron. 2011, 26, 2720–2723.
Zhou, F.; Jing, W.; Liu, P.; Han, D.; Jiang, Z.; Wei, Z. Doping Aging ZnO Nanorods to Improve the Performance of Related Enzymatic Glucose Sensors. Sensors 2017, 17, 2214.
Wang, H.H.; Chen, X.J.; Li, W.T.; Zhou, W.H.; Guo, X.C.; Kang, W.Y.; Kou, D.X.; Zhou, Z.J.; Meng, Y.N.; Tian, Q.W. ZnO nanotubes supported molecularly imprinted polymers arrays as sensing materials for electrochemical detection of dopamine. Talanta 2018, 176, 573–581.
Sultan, S.M.; de Planque, M.R.R.; Ashburn, P.; Chong, H.M.H. Effect of Phosphate Buffered Saline Solutions on Top-Down Fabricated ZnO Nanowire Field Effect Transistor. J. Nanometer. 2017, 2017, 7.
Aydin, C. Synthesis of Pd: ZnO nanofibers and their optical characterization dependent on modified morphological properties. J. Alloy. Compd. 2019, 777, 145–151.
Hussain, S.; Liu, T.; Aslam, N.; Kashif, M.; Cao, S.; Rashad, M.; Zhang, Y.; Zeng, W.; Javed, M.S. Polymer-assisted co-axial multi-layered circular ZnO Nano disks. Mater. Lett. 2015, 152, 260–263.
Wang, X.; Ma, X.; Church, J.; Jung, S.; Son, Y.; Lee, W.H.; Cho, H.J. ZnO namesakes as a template for in-situ electrodeposition of nanostructured cobalt electrodes as amperometric phosphate sensors. Mater. Lett. 2017, 192, 107–110.
Tian, H.; Fan, H.; Ma, J.; Ma, L.; Dong, G. Noble metal-free modified electrode of exfoliated graphitic carbon nitride/ZnO nanosheets for highly efficient hydrogen peroxide sensing. Electrochim. Acta 2017, 247, 787–794.
Yu, L.; Guo, F.; Liu, S.; Yang, B.; Jiang, Y.; Qi,L.; Fan, X. Both oxygen vacancies defects and porosity facilitated NO2 gas sensing response in 2D ZnO nano walls at room temperature. J.Alloy. Compd. 2016, 682, 352–356.
Wang, Y.; Deng, H.; Huangfu, C.; Lu, Z.; Wang, X.; Zeng, X.; He, H.; Rao, H. Research of protein adsorption on the different surface topography of the zinc oxide. Surf. Interface Anal. 2015, 47 245–252.
Hahm, J.I. Fundamental properties of one-dimensional zinc oxide nanomaterials and implementations in various detection modes of enhanced bio sensing. Annu. Rev. Phys. Chem. 2016, 67, 691–717.
Kim, K.E.; Kim, T.G.; Sung, Y.M. Enzyme-conjugated ZnO nanocrystals for collisional quenching-based glucose sensing. Cryst Eng Comm 2012, 14, 2859–2865.
Mirzaei, H.; Darroudi, M. Zinc oxide nanoparticles: Biological synthesis and biomedical applications. Ceram. Int. 2017, 43, 907–914.
Khan, R.; Kaushik, A.; Solanki, P.R.; Ansari, A.A.; Pandey, M.K.; Malhotra, B.D. Zinc oxide nanoparticles-chitosan composite film for cholesterol biosensor. Anal. Chim. Acta 2008, 616, 207–213.
Aljawfi, R.N.; Rahman, F.; Batoo, D.K.M. Effect of grain size and grain boundary defects on electrical and magnetic properties of Cr doped ZnO nanoparticles. J. Mol. Struct. 2014, 1065, 199–204.
Li, Q.; Kumar, V.; Li, Y.; Zhang, H.; Marks, T.J.; Chang, R.P.H. Fabrication of ZnO Nanorods and Nanotubes in Aqueous Solutions. Chem. Mater. 2005, 17, 1001–1006.
Choi, A.; Kim, K.; Jung, H.I.; Lee, S.Y. ZnO nanowire biosensors for detection of biomolecular interactions in enhancement mode. Sens. Actuators B Chem. 2010, 148, 577–582.
Vabbina, P.K.; Kaushik, A.; Pokhrel, N.; Bhansali, S.; Pala, N. Electrochemical cortisol immune sensors based on soon chemically synthesized zinc oxide 1D nanorods and 2D nano flakes. Biosensor. Bio electron. 2015, 63, 124–130.
Zhang, B.; Lu, L.; Hu, Q.; Huang, F.; Lin, Z. ZnO nano flower-based photo electrochemical DNA zyme sensor for the detection of Pb2+. Biosens. Bioelectron. 2014, 56, 243–249.
Guo, W. One- pot synthesis of urchin-like ZnO nanostructure and its enhance dacetine gas sensing properties. J. Mater. Sci. Mater. Electron. 2017, 28, 963–972.
Yazdi, M. A. P.; Martin, N.; Monsifrot, E.; Briois, P.; Billard, A. ZnO nano-tree active layer as heavy hydrocarbon sensor: From material synthesis to electrical and gas sensing properties. Thin Solid Films 2015, 596, 128–134.
(133). Ko, S.H.; Lee, D.; Kang, H.W.; Nam, K.H.; Yeo, J.Y.; Hong, S.J.; Grigoropoulos, C.P.; Sung, H.J. Nano forest of hydrothermally grown hierarchical ZnO nanowires for a high efficiency dye-sensitized solar cell. Nano Lett. 2011, 11, 666–671.
Breedon, M.; Rahmani, M.B.; Keshmiri, S.H.; Wlodarski, W.; Kalantar-zadeh, K. Aqueous synthesis of interconnected ZnO nanowires using spray pyrolysis deposited seed layers. Mater. Lett. 2010, 64, 291–294.
Xu, S.; Wang, Z.L. One-dimensional ZnO nanostructures: Solution growth and functional properties. Nano Res. 2011, 4, 1013–1098.
Baruah, S.; Dutta, J. Hydrothermal growth of ZnO nanostructures. Sci. Technol. Adv. Mater. 2009, 10, 13001.
Núñez, C.G.; Liu, F.; Navaraj, W.T.; Christou, A.; Shakthivel, D.; Dahiya, R. Heterogeneous integration of contact-printed semiconductor nanowires for high-performance devices on large areas. Microsyst. Nanoeng. 2018, 4, 22.
Duraimurugan,J.;Kumar,G.S.;Venkatesh,M.;Maadeswaran,P.;Girija,E.K.Morphologyandsizecontrolled synthesis of zinc oxide nanostructures and their optical properties. J. Mater. Sci. Mater. Electron. 2018, 29, 9339–9346.
W. W. Adams and R. H. Baughman, “Richard E. Smalley (1943–2005),”Science,vol.310,no.5756,p.1916,2005.
M. Nasrollahzade hand S. Mohammad Sajadi, “Green synthesis of copper nanoparticles using Gink gobiloba L. leaf extract and their catalytic activity for the Huises (3+2) cycloaddition of asides and alkynes at room temperature,” Journal of Colloid and Interface Science, vol.457,pp.141–147,2015.
S. Sabir, M. Arshad, and S. K.Chaudhari “Zinc oxide nanoparticles for revolutionizing agriculture: synthesis and applications, “The Scientific World Journal, vol.2014, Article ID925494, 2014.
X. Wang, Y. Ding, C. J. Summers, and Z. L. Wang, “Large-scale synthesis of six-nanometer-wide ZnO nano belts, ”The Journalof PhysicalChemistryB,vol.108,no.26,pp.8773–8777,2004.
O. Behera, Synthesis and Characterization of ZnO Nanoparticles of Various Sizes and Applications in Biological Systems, National Institute of Technology,Rourkela,India,2008.
X.Bai,L.Li,H.Liu,L.Tan,T.Liu,andX.Meng,“Solvothermal synthesis of ZnO nanoparticles and anti-infection application invivo,”ACS Applied Materials and Interfaces, vol.7,no.2,pp. 1308–1317,2015.
U.¨Ozg¨ ur, Y. I. Alivov, C. Liu et al., “A comprehensive review of ZnO materials and devices, ”Journal of AppliedPhysics,vol.98, no.4,ArticleID041301,2005.
W. J. Jeong, S. K. Kim, and G. C. Park, “Preparation and characteristic of ZnO thin film with high and low resistivity foran application of solar cell,” Thin Solid Films, vol.506-507,pp.180– 183,2006.
M. Moritzand M. Geszke-Moritz, “Then west achieve mentsin synthesis, immobilization and practical applications of antibacterial nano particles, “Chemical Engineering Journal, vol.228,pp. 596–613,2013.
K. Rekha, M. Nirmala, M. G. Nair, and A. Anukaliani, “Structural, optical, photocatalytic and antibacterial activity of zinc oxide and manganese doped zinc oxide nanoparticles,”Physica B: Condensed Matter, vol.405, no.15, pp.3180–3185, 2010.
S. Nair, A.Sasidharan, V. V. Divya Ranietal., “Role of size scale of ZnO nanoparticles and micro particles on toxicity toward bacteria and osteoblast cancer cells,” Journal of Materials Science: Materials in Medicine, vol.20, no. 1, pp.S235–S241, 2009.
A. A. Reinert, C. Payne, L. Wang, J. Ciston, Y. Zhu, and P. G. Khalifah,“Synthesis and characterization of visible light absorbing (GaN) 1-x(ZnO)x semiconductor nanorods,” Inorganic Chemistry,vol.52,no.15,pp.8389–8398,2013.
B. Ludiand M. Nieder berger, “Zinc oxide nanoparticles: chemical mechanisms and classical and non- classical crystallization,” Dalton Transactions, vol. 42, no. 35, pp.12554–12568, 2013.
D. Vanmaek elberghand L. K. Van Vugt, “ZnO nano wirelesses,” Nanoscale,vol. 3,no.7, pp. 2783–2800, 2011.
Z. L. Wang, “Zinc oxide nano structures: growth, properties and applications,” Journal of Physics Condensed Matter, vol. 16, no. 25, pp.R829–R858, 2004.
M. J. Osmond and M. J. McCall, “Zinc oxide nanoparticles in modern sunscreens: an analysis of potential exposure and hazard, “Nano toxicology, vol. 4, no. 1, pp. 15–41, 2010.
M. E. Darvin, K. K¨ onig, M. Kellner-Hoeferetal.,“Safety assessment by multiphoton fluorescence/second harmonic generation/hyper-Rayleigh scattering tomography of ZnO nanoparticles used in cosmetic products,” Skin Pharmacology and Physiology,vol.25,no.4,pp.219–226,2012.
P.-J. Lu, S.-C. Huang, Y.-P. Chen, L.-C. Chiueh, and D. Y.-C. Shih, “Analysis of titanium dioxide and zinc oxide nanoparticles in cosmetics,”Journal of Food and Drug Analysis, vol.23, no.3, pp.587–594, 2015.
P. Singh and A. Nanda, “Enhanced sun protection of nano-sized metal oxide particles over conventional metal oxide particles: an in vitro comparative study, “International Journal of Cosmetic Science, vol.36, no.3, pp.273–283, 2014.
Y. Zhang, T. R. Nayak, H. Hong, and W. Cai, “Biomedical applications of zinc oxide nanomaterials,” Current Molecular Medicine, vol. 13, no. 10, pp. 1633–1645, 2013.
Zhu S, Li L, Liu J, et al. Structural directed growth of ultrathin parallel birnessite on beta-MnO2 for high performance asymmetric supercapacitors. ACS Nano. 2004; 12(2):1033–1042.
Roberts AJ, Slade RCT. Birnessite nanotubes for electrochemical supercapacitor electrodes. Energy Environ Sci. 2011;4(8):2813.
Zhang J, Jiang J, Zhao XS. Synthesis and capacitive properties of manganese oxide nanosheets dispersed on functionalized graphene sheets. J Phys Chem C. 2011; 115(14):6448–6454.
Zhang X, Sun XZ, Chen Y, et al. One-step solvethermal synthesis of graphene/Mn3O4 nanocomposites and their electrochemical properties for supercapacitors. Mater Lett. 2012; 68:336–339.
GAO F, Qu JY, Zhao ZB, et al. A green strategy for the synthesis of graphene supported Mn3O4 nanocomposites from graphitized coal and their supercapacitor application. Carbon. 2014; 80:640–650.
Cui XW, Hu FP, Wei WF, et al. Dense and long carbon nanotube arrays decorated with Mn3O4 nanoparticles for electrodes of electrochemical supercapacitors. Carbon. 2011; 49(4):1225–1234. 7. Li L, Seng KH, Chen ZX, et al. Synthesis of Mn3O4-anchored graphene sheet nanocomposites via a facile, fast microwave hydrothermal method and their supercapacitive behavior. Acta. 2013; 87:801–808.
Devaraj S, Munichandraiah N. Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties. J Phys Chem C. 2008; 112(11):4406-4417.
Ghodbane O, Pascal JL, Favier F. Microstructural effects on charge storage properties in MnO2-based electrochemical supercapacitors. ACS Apple Mater Interfaces. 2009; 1(5):1130-1139.
Wu S, Wu X, Wang G, et al. High-yield preparation of K-birnessite layered nanoflake. Electro him Act. 2016; 218:66–73.
Huang H, Sun G, Hu J, et al. Low temperature synthesis of MnO2/ graphene nanocomposites for supercapacitors. J Chem. 2015: 1–8.
Zhang X, Yu P, Zhang H, et al. Rapid hydrothermal synthesis of hierarchical nanostructures assembled from ultrathin birnessite-type MnO2 nanosheets for supercapacitor applications. Electro him Act. 2013; 89:523–529.
Oaki Y, Imai H. One-pot synthesis of manganese oxide nanosheets in aqueous solution: chelation-mediated parallel control of reaction and morphology. Anew Chem. 2007; 46(26):4951–4955.
Chang J, Jin M, Yao F, et al. Asymmetric supercapacitors based on graphene/MnO2 nanospheres and graphene/MoO3 nanosheets with high energy density. Adv Funct Mater. 2013; 23(40):5074–5083.
Xiao W, Xia H, Fuh JYH, et al. Growth of single-crystal α-MnO2 nanotubes prepared by a hydrothermal route and their electrochemical properties. J Power Sources. 2009; 193(2):935–938.
Deng MJ, Chang JK, Wang CC, et al. High-performance electrochemical pseudo-capacitor based on MnO2 nanowires/Ni foam as electrode with a novel Li-ion quasi-ionic liquid as electrolyte. Energy Environ Sci. 2001; 4:3942–3946.
Lv Z, Luo Y, Tang Y, et al. Editable supercapacitors with customizable stretch ability based on mechanically strengthened ultra-long MnO2 nanowire composite. Adv Mater. 2018; 30(2):1704531.
Zhang J, Chu W, Jiang J, et al. Synthesis, characterization and capacitive performance of hydrous manganese dioxide nanostructures. Nanotechnology. 2011;22(12):125703.
Liu, Y., Zhang, N., Wang, J., & Wang, L. (2020). Hierarchical ZnO–MnO₂ nanostructures for high-performance biosensor applications. Sensors and Actuators B: Chemical, 320, 128387. https://doi.org/10.1016/j.snb.2020.128387
Norouzi, P., H. Ganjali, B. Larijani, M. R. Ganjali, F. Faridbod, and H. A. Zamani. 2011. A glucose biosensor based on nanographene and ZnO nanoparticles using FFT continuous cyclic voltammetry. Int. J. Electrochemist. Sci. 6: 5189–5199.
Palanisamy, S., A. T. E. Vilian, and S. M. Chen. 2012. Direct electrochemistry of glucose oxidase at reduced graphene oxide=zinc oxide composite modified electrode for glucose sensor. Int. J. Electro him. Sci. 7: 2153–2163.
Kavitha, T., A. I. Gopalan, K. P. Lee, and S. Y. Park. 2012. Glucose sensing, photocatalytic and antibacterial properties of graphene-ZnO nanoparticles hybrids. Carbon 50: 2994–3000.
Xiao, F., F. Li, H. GAO, S. Ge, and H. Duan. 2013. Growth of coral-like PtAu-MnO2 binary nanocomposites on free standing graphene paper for flexible nonenzymatic glucose sensors. Biosensor. Bio electron. 41: 417–423.
Sharma, A., Singh, P., & Dutta, V. (2021). Sol–gel derived ZnO–MnO₂ nanocomposites for electrochemical biosensing of glucose. Journal of Electroanalytical Chemistry, 882, 114988. https://doi.org/10.1016/j.jelechem.2020.114988
Chen, X., Li, Y., Xu, D., & Huang, J. (2019). One-step synthesis of ZnO–MnO₂ core–shell nanorods for enzymatic glucose sensors. Electrochimica Acta, 297, 236–244. https://doi.org/10.1016/j.electacta.2018.11.157
Banerjee, A., Ghosh, S., & Das, J. (2022). Design of MnO₂-decorated ZnO flowers for highly sensitive glucose biosensors. ACS Applied Nano Materials, 5(1), 678–687. https://doi.org/10.1021/acsanm.1c03102
Kumar, V., Sharma, R., & Jain, A. (2023). Non-enzymatic glucose detection using MnO₂ nanosheets-modified ZnO nanorods. Biosensors and Bioelectronics, 223, 115040. https://doi.org/10.1016/j.bios.2022.115040
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Saira Shaheen

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.