INVESTIGATING THE ANTIFUNGAL POTENTIAL OF ESSENTIAL OILS FROM DIFFERENT PLANTS AGAINST BREAD MOLD CONTAMINANTS: A FAISALABAD, PAKISTAN PERSPECTIVE

Authors

  • A IJAZ Institute of Microbiology, Government College University Faisalabad 38000, Pakistan
  • G NAZ Institute of Microbiology, Government College University Faisalabad 38000, Pakistan
  • K MAJEED Department of Zoology University of Sialkot, Sialkot, Pakistan
  • VA MUGHAL Department of Microbiology, University: Quaid-i-Azam University, Islamabad, Pakistan
  • K AMJAD Department of Zoology University of Sialkot, Sialkot, Pakistan
  • A SARWAR Institute of Microbiology, Government College University Faisalabad 38000, Pakistan
  • S MAHMOOD Institute of Microbiology, Government College University Faisalabad 38000, Pakistan

DOI:

https://doi.org/10.54112/bcsrj.v2024i1.900

Keywords:

Essential Oils; Antifungal; Bread; Mold; Spoilage

Abstract

Bread spoilage caused by molds poses a significant challenge to the bakery industry, resulting in financial losses for both producers and consumers due to microbial deterioration and waste. Traditional methods rely on chemical preservatives like propionic acid to extend bread shelf life, but there's growing consumer demand for natural alternatives. Essential oils (EOs) have garnered interest for their potential as natural preservatives, given their wide-ranging applications in food preservation and beyond. This study assessed the antifungal properties of EOs derived from Rosemary, Lemongrass, Clove, Cinnamon, Cardamom, and Garlic using agar well diffusion and micro-dilution methods. Samples of stale bread contaminated with various fungal species were tested, revealing that rosemary, clove, and cinnamon exhibited significant antifungal activity against common molds such as Mucor piriformis, Penicillium, Aspergillus, Alternaria, and Cladosporium possessing zones of inhibition ranging from 16±7 to 40±5. The mean MIC of rosemary, lemongrass, clove, and cinnamon against Mucor piriformis was 0.054, 0.032, 0.002, and 0.01µg respectively. 0.035, 0.033, 0.002, and 0.033µg were observed for A. fumigatus. Regarding A. flavus, the mean MIC values were 0.035, 0.003, 0.0023, and 0.009µg, while 0.037µg, 0.0023µg, 0.002µg, 0.022µg and 0.037µg, 0.032µg, 0.002µg, and 0.023µg were observed in P. chrysogenum and A. niger respectively. The MFC of the rosemary, lemongrass, clove, and cinnamon were: (M. piriformis: 0.016, 0.009, 0.002, and 0.004µg. A. fumigatus: 0.016, 0.0106, 0.0036, and 0.0043µg. A. flavus: 0.016, 0.014, 0.0043, and 0.0053µg. P. chrysogemum: 0.017, 0.014, 0.005, and 0.004µg. A. niger: 0.016, 0.014, 0.005, and 0.0043µg). While the tested EOs showed promising results in inhibiting fungal growth, further research is needed to fully understand their mechanisms of action and explore additional EO sources for potential application in the bakery industry.

Downloads

Download data is not yet available.

References

Aati, H. Y., Perveen, S., Orfali, R., Al-Taweel, A. M., Aati, S., Wanner, J.,& Mehmood, R. (2020). Chemical composition and antimicrobial activity of the essential oils of Artemisia absinthium, Artemisia scoparia, and Artemisia sieberi grown in Saudi Arabia. Arabian Journal of Chemistry, 13(11), 8209-8217.

ADEOYE, A. O., AJALA, A. S., & OLADIPO, I. C. (2021). Microbial assessment and proximate composition of bread samples collected from different bakeries in Ogbomoso, Oyo state, Nigeria. Notulae Scientia Biologicae, 13(1), 10873-10873.

Afonso, T. B., Melo, A. N., Carvalho, M., Ribeiro, T., Pinto, M. M., Barros, L.,& Pintado, M. (2021). Evaluation of minimum inhibition concentrations of plant against environmental fungi and dermatophytes. In 4th International Congress of Bíochemistry and Microbiology Applied Technologie: book of abstracts (pp. 179-179). AEAE Congress.

Ahangari, H., King, J. W., Ehsani, A., & Yousefi, M. (2021). Supercritical fluid extraction of seed oils–A short review of current trends. Trends in Food Science & Technology, 111, 249-260.

Aliyu, A., Auyo, M. I., Kurawa, M. M., Haris, N. G., & Sadiya, S. (2022). Shelf Life Assessment of Fungal Contaminants Associated with Selected Bakery Products (Bread, Meat Pie and Cake) in Dutse Metropolis. ATBU Journal of Science, Technology and Education, 9(4), 343-348.

Alkenz, S., Sassi, A. A., Abugnah, Y. S., & Alryani, M. B. (2015). Isolation and identification of fungi associated with some Libyan foods. African Journal of Food Science, 9(7), 406-410.

Amirthalingam, M., Chitan, A., Nip, P., & O’Keeffe, L. (2022). Effectiveness of Acidic Solutions as an Antimicrobial Agent on Plain Bread. The Expedition, 13

Axel, C., Zannini, E., & Arendt, E. K. (2017). Mold spoilage of bread and its biopreservation: A review of current strategies for bread shelf life extension. Critical Reviews in food science and nutrition, 57(16), 3528-3542.

Bahobail, A. S. (2016). Mycobiota Associated with Wheat Grains, Wheat Flour and Cellulolytic Ability at Taif City, Saudia Arabia. Journal of Food and Nutrition Research, 4(9), 571-581.

Bonneville, S., Delpomdor, F., Préat, A., Chevalier, C., Araki, T., Kazemian, M., ...& Benning, L. G. (2020). Molecular identification of fungi microfossils in a Neoproterozoic shale rock. Science advances, 6(4), eaax7599.

Boubaker, H., Karim, H., El Hamdaoui, A., Msanda, F., Leach, D., Bombarda, I., ...& Aoumar, A. A. B. (2016). Chemical characterization and antifungal activities of four Thymus species essential oils against postharvest fungal pathogens of citrus. Industrial Crops and Products, 86, 95-101.

Burt, S. (2004). Essential oils: their antibacterial properties and potential applications in foods—a review. International journal of food microbiology, 94(3), 223-253.

Carvalho, Â. R., Bazana, L. C. G., Ferrão, M. F., & Fuentefria, A. M. (2021). Curve fitting and linearization of UV–Vis spectrophotometric measurements to estimate yeast in inoculum preparation. Analytical Biochemistry, 625, 114216.

Chaplygina, I. A., Batura, N. G., Matyushev, V. V., Tipsina, N. N., & Shmeleva, Z. N. (2020). The hop sourdough use to improve bread microbiological safety. In IOP Conference Series: Earth and Environmental Science (Vol. 421, No. 3, p. 032030). IOP Publishing.

Císarová, M., Tančinová, D., & Medo, J. (2016). Antifungal activity of lemon, eucalyptus, thyme, oregano, sage and lavender essential oils against Aspergillus niger and Aspergillus tubingensis isolated from grapes. Potravinarstvo, 10(1).

Darughe, F., Barzegar, M., & Sahari, M. A. (2012). Antioxidant and antifungal activity of Coriander (Coriandrum sativum L.) essential oil in cake. International Food Research Journal, 19(3), 1253-1260.

Davari, M., & Ezazi, R. (2017). Chemical composition and antifungal activity of the essential oil of Zhumeria majdae, Heracleum persicum and Eucalyptus sp. against some important phytopathogenic fungi. Journal de mycologie medicale, 27(4), 463-468.

De Toledo, L. G., Ramos, M. A. D. S., Spósito, L., Castilho, E. M., Pavan, F. R., Lopes, É. D. O., ... & De Almeida, M. T. G. (2016). Essential oil of Cymbopogon nardus (L.) Rendle: A strategy to combat fungal infections caused by Candida species. International Journal of Molecular Sciences, 17(8), 1252.

El Boumlasy, S., La Spada, F., Tuccitto, N., Marletta, G., Mínguez, C. L., Meca, G., ...& Cacciola, S. O. (2021). Inhibitory Activity of Shrimp Waste Extracts on Fungal and Oomycete Plant Pathogens. Plants, 10(11), 2452.

El Gendy, A. N., Leonardi, M., Mugnaini, L., Bertelloni, F., Ebani, V. V., Nardoni, S., ...& Pistelli, L. (2015). Chemical composition and antimicrobial activity of essential oil of wild and cultivated Origanum syriacum plants grown in Sinai, Egypt. Industrial Crops and Products, 67, 201-207.

Elshafie, H. S., Caputo, L., De Martino, L., Gruľová, D., Zheljazkov, V. Z., De Feo, V., & Camele, I. (2020). Biological investigations of essential oils extracted from three Juniperus species and evaluation of their antimicrobial, antioxidant and cytotoxic activities. Journal of Applied Microbiology, 129(5), 1261-1271.

Elshafie, H. S., Sakr, S., Mang, S. M., Belviso, S., De Feo, V., & Camele, I. (2016). Antimicrobial activity and chemical composition of three essential oils extracted from Mediterranean aromatic plants. Journal of medicinal food, 19(11), 1096-1103.

Elshafie, S. S., Elshafie, H. S., El Bayomi, R. M., Camele, I., & Morshdy, A. E. (2022). Evaluation of the antimicrobial activity of four plant essential oils against some food and phytopathogens isolated from processed meat products in Egypt. Foods, 11(8), 1159.

Fagbemi, K. O., Aina, D. A., & Olajuyigbe, O. O. (2021). Soxhlet Extraction versus Hydrodistillation Using the Clevenger Apparatus: A Comparative Study on the Extraction of a Volatile Compound from Tamarindus indica Seeds. The Scientific World Journal, 2021.

Felšöciová, S., Vukovic, N., Jeżowski, P., & Kačániová, M. (2020). Antifungal activity of selected volatile essential oils against Penicillium sp. Open Life Sciences, 15(1), 511-521.

Fontenelle, R. O. S., Morais, S. M., Brito, E. H. S., Brilhante, R. S. N., Cordeiro, R. A., Nascimento, N. R. F., ... & Rocha, M. F. G. (2008). Antifungal activity of essential oils of Croton species from the Brazilian Caatinga biome. Journal of Applied Microbiology, 104(5), 1383-1390.

Garcia, M. V., Bernardi, A. O., & Copetti, M. V. (2019). The fungal problem in bread production: Insights of causes, consequences, and control methods. Current Opinion in Food Science, 29, 1-6.

Garcia, M. V., Bernardi, A. O., Parussolo, G., Stefanello, A., Lemos, J. G., & Copetti, M. V. (2019). Spoilage fungi in a bread factory in Brazil: Diversity and incidence through the bread-making process. Food Research International, 126, 108593.

Garcia, M. V., Bernardi, A. O., Parussolo, G., Stefanello, A., Lemos, J. G., & Copetti, M. V. (2019). Spoilage fungi in a bread factory in Brazil: Diversity and incidence through the bread-making process. Food Research International, 126, 108593.

Grande-Tovar, C. D., Chaves-López, C., Serio, A., Rossi, C., & Paparella, A. (2018). Chitosan coatings enriched with essential oils: Effects on fungi involved in fruit decay and mechanisms of action. Trends in Food Science & Technology, 78, 61-71.

Gray, J. A., & Bemiller, J. N. (2003). Bread staling: molecular basis and control. Comprehensive reviews in food science and food safety, 2(1), 1-21.

Gu, S., Chen, W., Wang, Z., Wang, J., & Huo, Y. (2020). Rapid detection of Aspergillus spp. infection levels on milled rice by headspace-gas chromatography ion-mobility spectrometry (HS-GC-IMS) and E-nose. LWT, 132, 109758.

Hegazy, S. M., Hassan, W. H., Shawki, H. M., & Osman, W. A. E. L. (2015). Study on toxigenic fungi in ruminant feeds under desert conditions with special references to its biological control. Beni-Suef University Journal of Basic and Applied Sciences, 4(2), 167-173.

Horváth, G., Jenei, J. T., Vágvölgyi, C., Böszörményi, A., & Krisch, J. (2016). Effects of essential oil combinations on pathogenic yeasts and moulds. Acta Biologica Hungarica, 67(2), 205-214.

Hossain, F., Follett, P., Vu, K. D., Harich, M., Salmieri, S., & Lacroix, M. (2016). Evidence for synergistic activity of plant-derived essential oils against fungal pathogens of food. Food microbiology, 53, 24-30.

Hossain, F., Follett, P., Vu, K. D., Harich, M., Salmieri, S., & Lacroix, M. (2016). Evidence for synergistic activity of plant-derived essential oils against fungal pathogens of food. Food microbiology, 53, 24-30.

Hu, F., Tu, X. F., Thakur, K., Hu, F., Li, X. L., Zhang, Y. S., ...& Wei, Z. J. (2019). Comparison of antifungal activity of essential oils from different plants against three fungi. Food and Chemical Toxicology, 134, 110821.

Hu, F., Tu, X. F., Thakur, K., Hu, F., Li, X. L., Zhang, Y. S., ...& Wei, Z. J. (2019). Comparison of antifungal activity of essential oils from different plants against three fungi. Food and Chemical Toxicology, 134, 110821.

Jung, T., Ineson, E. M., Kim, M., & Yap, M. H. (2015). Influence of festival attribute qualities on Slow Food tourists’ experience, satisfaction level and revisit intention: The case of the Mold Food and Drink Festival. Journal of Vacation Marketing, 21(3), 277-288

Jürgensen, C. W., & Madsen, A. M. (2016). Influence of everyday activities and presence of people in common indoor environments on exposure to airborne fungi. AIMS Environ. Sci, 3(1), 77-95.Kaur, L., Patel, J., & Shastri, P. (2022). Testing antimicrobial effects of tea-tree oil using S. cerevisiae and bread mold. Canadian Journal of Undergraduate Research, 7(1).

Khaledi, N., Taheri, P., & Tarighi, S. (2015). Antifungal activity of various essential oils against R hizoctonia solani and M acrophomina phaseolina as major bean pathogens. Journal of applied microbiology, 118(3), 704-717.

Knoll, M. A., Samardzic, E., Posch, W., & Lass-Flörl, C. (2022). Evaluation of Inoculum Preparation for Etest and EUCAST Broth Dilution to Detect Anidulafungin Polyresistance in Candida glabrata. Antimicrobial Agents and Chemotherapy, e00168-22.

Kunter, İ., Hürer, N., Gülcan, H. O., Öztürk, B., Doğan, İ., & Şahin, G. (2017). Assessment of aflatoxin M1 and heavy metal levels in mothers breast milk in Famagusta, Cyprus. Biological trace element research, 175(1), 42-49.

Li, Q. Q., Huo, Y. Y., Chen, C. J., Zeng, Z. Y., Xu, F. R., Cheng, Y. X., & Dong, X. (2020). Biological activities of two essential oils from Pogostemon cablin and Eupatorium fortunei and their major components against fungi isolated from Panax notoginseng. Chemistry & Biodiversity, 17(12), e2000520.

Lin, H. J., Lin, Y. L., Huang, B. B., Lin, Y. T., Li, H. K., Lu, W. J., ... & Lin, H. T. V. (2022). Solid-and vapour-phase antifungal activities of six essential oils and their applications in postharvest fungal control of peach (Prunus persica L. Batsch). LWT, 156, 113031.

Liu, Y., Wang, R., Zhao, L., Huo, S., Liu, S., Zhang, H., ...& Lv, H. (2022). The Antifungal Activity of Cinnamon-Litsea Combined Essential Oil against Dominant Fungal Strains of Moldy Peanut Kernels. Foods, 11(11), 1586.

Mahmoudi, S., Masoomi, A., Ahmadikia, K., Tabatabaei, S. A., Soleimani, M., Rezaie, S., ...& Banafsheafshan, A. (2018). Fungal keratitis: An overview of clinical and laboratory aspects. Mycoses, 61(12), 916-930.

Matumba, L., Monjerezi, M., Kankwamba, H., Njoroge, S., Ndilowe, P., Kabuli, H., ...& Njapau, H. (2016). Knowledge, attitude, and practices concerning presence of molds in foods among members of the general public in Malawi. Mycotoxin research, 32(1), 27-36.

Melini, V., & Melini, F. (2018). Strategies to extend bread and GF bread shelf-life: From Sourdough to antimicrobial active packaging and nanotechnology. Fermentation, 4(1), 9.

Mollaei, S., Sedighi, F., Habibi, B., Hazrati, S., & Asgharian, P. (2019). Extraction of essential oils of Ferulago angulata with microwave-assisted hydrodistillation. Industrial Crops and Products, 137, 43-51.

Montesinos‐Matías, R., Ordaz‐Hernández, A., Angel‐Cuapio, A., Colin‐Bonifacio, Y., Garcia‐Garcia, R. E., Ángel‐Sahagún, C. A., & Arredondo‐Bernal, H. C. (2021). Principal component analysis of the biological characteristics of entomopathogenic fungi in nutrient‐limited and cuticle‐based media. Journal of Basic Microbiology, 61(2), 147-156.

Mou, L., Du, X., Lu, X., Lu, Y., Li, G., & Li, J. (2021). Component analysis and antifungal activity of three Chinese herbal essential oils and their application of postharvest preservation of peach fruit. LWT, 151, 112089.

Naeini, A., Ziglari, T., Shokri, H., & Khosravi, A. R. (2010). Assessment of growth-inhibiting effect of some plant essential oils on different Fusarium isolates. Journal de mycologie médicale, 20(3), 174-178.

Nyamath, S., & Karthikeyan, B. (2018). In vitro antibacterial activity of lemongrass (Cymbopogon citratus) leaves extract by agar well method. Journal of Pharmacognosy and Phytochemistry, 7(3), 1185-1188.

Ogbonna David, N., & Udo, U. M. (2015) Characteristics of Fungi isolated from Vended fruits in Port Harcourt Metropolis.

Okiemute, A. P., & Obeagu, E. I. (2022). ISOLATION AND CHARACTERIZATION OF FUNGI ASSOCIATED WITH STALED BREAD IN MADONNA UNIVERSITY ELELE CAMPUS FEMALE HOSTEL.

Olsen, M., Lindqvist, R., Bakeeva, A., Su-lin, L. L., & Sulyok, M. (2019). Distribution of mycotoxins produced by Penicillium spp. inoculated in apple jam and crème fraiche during chilled storage. International journal of food microbiology, 292, 13-20.

Pateras, I. (2007). Bread spoilage and staling. In Technology of breadmaking (pp. 275-298). Springer, Boston, MA.

Pinilla, C. M. B., Thys, R. C. S., & Brandelli, A. (2019). Antifungal properties of phosphatidylcholine-oleic acid liposomes encapsulating garlic against environmental fungal in wheat bread. International Journal of Food Microbiology, 293, 72-78.

Prakash, P. Y., & Bhargava, K. (2016). A modified micro chamber agar spot slide culture technique for microscopic examination of filamentous fungi. Journal of microbiological methods, 123, 126-129.

Puvača, N., Milenković, J., Galonja Coghill, T., Bursić, V., Petrović, A., Tanasković, S., ...& Miljković, T. (2021). Antimicrobial activity of selected essential oils against selected pathogenic bacteria: In vitro study. Antibiotics, 10(5), 546.

Rahmouni, A., Saidi, R., Khaddor, M., Pinto, E., Da Silva Joaquim Carlos Gomes, E., & Maouni, A. (2019). Chemical composition and antifungal activity of five essential oils and their major components against Fusarium oxysporum f. sp. albedinis of Moroccan palm tree. Euro-Mediterranean Journal for Environmental Integration, 4(1), 1-9.

Raj, R., & Joshi, N. (2016). A Comparative Study of Aeromycoflora in Traffic and Residential Areas of Haridwar City, India. Int. J. Curr. Microbiol. App. Sci, 5(6), 161-170.

Sadeghi Dehkordi, Z., Bazargani-Gilani, B., & Salari, S. (2017). Quality of flour types, in the bakeries of Hamedan, Iran during 2015-2016. Archives of Hygiene Sciences, 6(2), 206-213.

Saharkhiz, M. J., Kamyab, A. A., Kazerani, N. K., Zomorodian, K., Pakshir, K., & Rahimi, M. J. (2015). Chemical compositions and antimicrobial activities of Ocimum sanctum L. essential oils at different harvest stages. Jundishapur journal of microbiology, 8(1).

Saricaoglu, F. T., & Turhan, S. (2018). Antimicrobial activity and antioxidant capacity of thyme, rosemary and clove essential oils and their mixtures. Journal of Innovative Science and Engineering, 2(1), 25-33.

Satyavani, K., Gurudeeban, S., Manigandan, V., Rajamanickam, E., & Ramanathan, T. (2015). Chemical compositions of medicinal mangrove species Acanthus ilicifolius, Excoecaria agallocha, Rhizophora apiculata and Rhizophora mucronata. Current Research in Chemistry, 7(1), 1-8.

Saxena, S., Uniyal, V., & Bhatt, R. P. (2012). Inhibitory effect of essential oils against Trichosporon ovoides causing Piedra Hair Infection. Brazilian Journal of Microbiology, 43, 1347-1354

Scarton, M., Ganancio, J. R. C., de Avelar, M. H. M., Clerici, M. T. P. S., & Steel, C. J. (2021). Lime juice and enzymes in clean label pan bread: baking quality and preservative effect. Journal of Food Science and Technology, 58(5), 1819-1828.

Şerban, E. S., Ionescu, M., Matinca, D., Maier, C. S., & Bojiţă, M. T. (2011). Screening of the antibacterial and antifungal activity of eight volatile essential oils. Farmacia, 59(3), 440-446

Shatnyuk, L. N., Kodentsova, V. M., & Vrzhesinskaya, O. A. (2012). Bread and bakery products as a source and carrier of micronutrients in human nutrition. Bakery of Russia, 3, 20-4.

Starovic, M., Ristic, D., Pavlovic, S., Ristic, M., Stevanovic, M., AlJuhaimi, F., ...& Özcan, M. M. (2016). Antifungal activities of different essential oils against anise seeds mycopopulations. J. Food Saf. Food Qual, 67, 72-78.

Střelková, T., Nemes, B., Kovács, A., Novotný, D., Božik, M., & Klouček, P. (2021). Inhibition of fungal strains isolated from cereal grains via vapor phase of essential oils. Molecules, 26(5), 1313.

Sudawa, R. H., Salisu, M. D., Ishaq, S. A., & Ali, M. (2022). Assessment and Determination of Fungal Load and Species Isolated from Cake Samples Sold in Kano, Northern Nigeria. South Asian Res J Bio Appl Biosci, 4(3), 63-67.

Tančinová, D., Barboráková, Z., Mašková, Z., Císarová, M., & Bojňanská, T. (2021). The occurrence of micromycetes in the bread samples and their potential ability produce mycotoxins. Journal of Microbiology, Biotechnology and Food Sciences, 2021, 813-818.

Torri, L., & Piochi, M. (2016). Sensory methods and electronic nose as innovative tools for the evaluation of the aroma transfer properties of food plastic bags. Food Research International, 85, 235-243.

Unachukwu, M. N., & Nwakanma, C. (2018). The fungi associated with the spoilage of bread in Enugu state. International Journal of Current Microbiology and Applied Sciences, 4(1), 989-995.

Valka, V., Ďúranová, H., Galovičová, L., Ivanišová, E., & Kačániová, M. (2021). Evaluation ovapor-phase antifungal activities of selected plant essential oils against fungal strains growing on bread food model. Slovak Journal of Food Sciences, 15.

Vasafi, P. S., Hamdami, N., & Keramat, J. (2019). Quality and microbial stability of part-baked ‘Barbari bread’during freezing storage. LWT, 104, 173-179.

Veršilovskis, A., & Bartkevičs, V. (2012). Stability of sterigmatocystin during the bread making process and its occurrence in bread from the Latvian market. Mycotoxin research, 28(2), 123-129.

Walia, S., Mukhia, S., Bhatt, V., Kumar, R., & Kumar, R. (2020). Variability in chemical composition and antimicrobial activity of Tagetes minuta L. essential oil collected from different locations of Himalaya. Industrial crops and products, 150, 112449.

Wang, H., Yang, Z., Ying, G., Yang, M., Nian, Y., Wei, F., & Kong, W. (2018). Antifungal evaluation of plant essential oils and their major components against toxigenic fungi. Industrial Crops and Products, 120, 180-186.

Wang, Y. H., & Zhang, Y. R. (2020). Variations in compositions and antioxidant activities of essential oils from leaves of Luodian Blumea balsamifera from different harvest times in China. Plos one, 15(6), e0234661.

Wang, Y., Li, R., Jiang, Z. T., Tan, J., Tang, S. H., Li, T. T., ...& Zhang, X. C. (2018). Green and solvent-free simultaneous ultrasonic-microwave assisted extraction of essential oil from white and black peppers. Industrial Crops and Products, 114, 164-172.

Zamanian Chaleshtori, Z., Bonyadian, M., Moshtaghi, H., & Ebrahimi, A. (2021). Antifungal effects of essential oils of Zataria multiflora, Mentha pulegium, and Mentha piperita. Journal of food quality and hazards control, 8(1), 41-44.

Downloads

Published

2024-06-20

How to Cite

IJAZ, A., NAZ, G., MAJEED, K., MUGHAL, V., AMJAD, K., SARWAR, . A., & MAHMOOD, S. (2024). INVESTIGATING THE ANTIFUNGAL POTENTIAL OF ESSENTIAL OILS FROM DIFFERENT PLANTS AGAINST BREAD MOLD CONTAMINANTS: A FAISALABAD, PAKISTAN PERSPECTIVE. Biological and Clinical Sciences Research Journal, 2024(1), 900. https://doi.org/10.54112/bcsrj.v2024i1.900

Most read articles by the same author(s)