EVALUATING COMBINING ABILITY AND HETEROSIS EFFECTS ON YIELD, ASSOCIATED TRAITS, AND YELLOW RUST RESISTANCE IN WHEAT (TRITICUM AESTIVUM L.)

Authors

  • R YASEEN Department of Plant Breeding and Genetics, Pir Mehr Ali Shah, Arid Agriculture University, Rawalpindi, Pakistan
  • T MAHMOOD Department of Plant Breeding and Genetics, Pir Mehr Ali Shah, Arid Agriculture University, Rawalpindi, Pakistan
  • WA BHATTI Department of Plant Breeding and Genetics, Pir Mehr Ali Shah, Arid Agriculture University, Rawalpindi, Pakistan
  • JA BHATTI Department of Plant Breeding and Genetics, Pir Mehr Ali Shah, Arid Agriculture University, Rawalpindi, Pakistan
  • N AKHTAR Department of Plant Breeding and Genetics, College of Agriculture, University of Sargodha, Sargodha, Pakistan
  • N RAZA Soil Fertility Section, Ayub Agriculture Research Institute, Faisalabad, Pakistan
  • T BIBI Rice Research Institute, Kala Shah Kaku, Lahore-39018, Pakistan

DOI:

https://doi.org/10.54112/bcsrj.v2024i1.671

Keywords:

Wheat, Yellow Rust, Line x Tester, Gene Action, Combining ability

Abstract

Wheat is a considerable energy source for the people of Pakistan and many other countries. Yellow rust is the most unpropitious biotic stress for wheat yield. The research was conducted to study the combining ability, heterosis and response of genotypes for yellow rust resistance. For this impetus, eight wheat genotypes, namely (five genotypes viz; Dharabi-11, Hp-1, Ehsan-16, Pak-13 and Morocco) were kept as lines and three genotypes viz; Markaz-19, Borlauge-16 and Fakhar-e-Bhakar used as testers. Lines X Testers matting design developed fifteen F1 hybrids sown in proper symmetry for crossing during rabi season 2020-21 at the university research farm, PMAS-Arid Agriculture University Rawalpindi, during 2020-21. During Rabi 2021-22, developed hybrids along with the eight parents in a randomized complete block design (RCBD) using three replications with plant-to-plant and row-to-row distances of 15cm and 25cm, respectively. Morocco was used as a spreader and sown after every five rows; two rows are the border of each replication. Data was recorded for the traits viz. flag leaf area, canopy temperature, chlorophyll content, days to maturity, 1000 grain weight, seed yield per plant and disease score. Mean value showed a maximum in Markaz-19 for flag leaf area, Pakistan-13 for chlorophyll content among parents. HP-1 x Markaz-19 showed maximum seed yield per plant (29.27 g). Minimum disease score was observed in Borlague-16.

Downloads

Download data is not yet available.

References

Ali, S., S. Sharma, M. Leconte, S.J.A. Shah, E. Duveiller, and C. de Vallvieille-Pope. (2014) Pathotype diversity of a recombinant Puccinia striiformis f.sp. tritici population in the Eastern part of Himalaya, Nepal. Plant Pathol. 67(4):810-820.

Beddow, J.M., P.G. Pardey, Y. Chai, T.M. Hurley, D.J. Kriticos andJ.C. Braun. (2015). Research investment implicatio of shifts in the global geography of wheat stripe rust. Nat. Plant 1:15132 1-5.

De Vallavieille-Pope, C., L. Huber, M. Leconte, and H. Goyeau. (1995). Comparative effects of temperature and interrupted wet periods on germination, penetration, and infection of 110 Puccinia recondita f.sp. tritici and P. striiformis on wheat seedlings. Phytopathology. 85:409-415.

De Vallavieille-Pope, C., S. Ali, M. Leconte, J. Enjalbert, M. Delos, and J. Rouzet. (2012). Virulence dynamics and regional structuring of Puccinia striiformis f. sp. tritici in France between 1984 and 2009. Plant Dis. 96:131-140.

Dean, R., Van Kan, J. A., Pretorius, Z. A., Hammond‐Kosack, K. E., Di Pietro, A., Spanu, P. D., & Foster, G. D. (2012). The Top 10 fungal pathoge in molecular plant pathology. Molecular plant pathology, 13(4), 414-430.

Fellahi, Z. E. A., Hannachi, A., Bouzerzour, H., & Boutekrabt, A. (2013). Line× Tester Mating Design Analysis for Grain Yield and Yield Related Traits in Bread Wheat (Triticum Aestivum L.). International Journal of Agronomy, 2013.

Godfray, H. C. J., Beddington, J. R., Crute, I. R., Haddad, L., Lawrence, D., Muir, J. F., Et Al. (2010). Food Secrity: The Challenge of Feeding 9 Billion People. Science 327, 812–819.

Hovmøller, M.S., S. Walter and A.F. Justesen. (2010). Escalating threat of wheat rusts. Science 329: 369-369.

Hovmøller, M.S., Søreen, C.K., Walter, S. And Justesen, A.F. (2011) Diversity of Puccinia Striiformis on Cereals and Grasses. Annu. Rev.

Kempthorne, O.P. (1957). An introduction to genetic statistics, John Willey and So, Inc., New York, p.545. https://knoema.com/atlas/topics/Agriculture/Crops-Production-Quantity-tonnes/Wheat-production

Shewry, P. R., & Hey, S. J. (2015). The Contribution of Wheat to Human Diet and Health. Food and Energy Security, 4(3), 178-202.

Singh, R.P., H.M. William, J. Huerta-Espino and G. Rosewarne. (2004). Wheat rust in Asia: meeting the challenges with old and new technologies. In Proceed 4th International Crop Science Congress, 26 Sep - 1 Oct 2004; Brisbane, Australia.

Pakistan Economic Survey. (2021-22), Government of Finance Division, Islamabad, Pakistan

Ray, D. K., Mueller, N. D., West, P. C., and Foley, J. A. (2013). Yield Trends Are Iufficient To Double Global Crop Production By 2050. Plos ONE 8: E66428.

World Data Atlas. (2020). Agriculture: Crop production; Quantity.

Mboup, M., Leconte, M., Gautier, A., Wan, A.M., Chen, W.Q., De Vallavielle-Pope, C. and Enjalbert, J. (2009). Evidence of Genetic Recombination in Wheat Yellow Rust Population of a Chinese Over-Summering Area. Fungal Genet. Biol. 46, 299– 307.

Wellings, C.R. (2011). Global Status of Stripe Rust: A Review of Historical and Current Threats. Euphytica, 179, 129– 141.

Ali, Z. and Khan, A.S. (1998). Combining ability studies of some morpho-physiological traits in bread wheat (Triticum aestivum L.). Pakistan Journal of Agricultural Science 35:1-3

Menon, U. and Sharma, S. N. (1997). Genetics of yield determining factors in spring wheat over environments. Indian Journal of Genetics 57: 301 -306.

Singh, R.P., H.M. William, J. Huerta-Espino and G. Rosewarne. (2004). Wheat rust in Asia: meeting the challenges with old and new technologies. In Proceed 4 the International Crop Science Congress, 26 Sep - 1 Oct 2004; Brisbane, Australia.

Senapati, N., S.K. Swain, and M.C. Patnaik, (2000). Combining ability and nature of gene action in bread wheat. J. Enviro. Eco. 18: 258-260.

Shabbir, G., T. Kiran, Z. Akram., M. Ijaz, Tabassum, and K.N. Shah. (2012). Genetics of some biometric traits in bread wheat (Triticum aestivum L.) J. Agric. Res. 50(4): 457-468

Singh, K. K.; Das, M. M.; Samanta, A. K.; Kundu, S. S.; Sharma, S. D. (2002). Evaluation of certain feed resources for carbohydrate and protein fraction and in situ digestion characteristics. Indian J. Anim. Sci., 72 (9): 794-797.

Faisal, M., A. Malik, S.I. Awan and S. Ali (2005). Genetic behavior and analysis of quantitative traits in five wheat genotypes. J. Agric. Soc. Sci. 1(4): 313-315.

Steel, R. G. D. and J. H. Torrie. (1997). Principle and Procedure of statistics: A biological approach (ed). McGraw Hill book company Inc. New York.

Zare-Kohan M, Heidari B. (2014). Diallel cross study for estimating genetic components underlying wheat grain yield. J Biology & Environ Sci 8:37–51

Sharma-Poudyal, D., X. Chen, A.M. Wan, G.M. Zhan, Z.S. Kang, S.Q. Cao, S.L. Jin, A. Morgounov, B. Akin, Z. Mert, S.J.A. Shah, H. Bux, M. Ashraf, R.C. Sharma, R. Madariaga, K.D. Puri, C. Wellings, K.Q. Xi, R. Wanyera, K. Manninger, M.I. Ganzález, M. Koyda, S. Sanin, and L.J.S. Patzek. (1978). Virulence characterization of international collection of the wheat stripe rust pathogen, Puccinia striiformis f. sp. tritici. Plant Dis. 97:379-386.

Javaid, A., Massod, S. and Minhas, N.M. (2001). Analysis of combining ability in wheat (Triticum aestivum L.) using F2 generation. Pakistan Journal of Biological Science 4:1303–1305.

Solomon, G. (2002). Genetic analysis in bread wheat (Triticum aestivum L.) for yield, yield attributing traits and disease resistance. M.Sc. Thesis, University of Agricultural Sciences, Dharwad-5, India.178p.

Yadav, A.K. and Sirohi, A. (2011). Combining ability for grain yield and other related traits in bread wheat (Triticum aestivum L.). Electron. J. Plant Breed., 2(3): 303-309.

Kempthorne, O.P., (1957). An introduction to genetic statistics, John Willey and So, Inc., New York, p. 545. (https://knoema.com/atlas/topics/Agriculture/Crops-Production-Quantity-tonnes/Wheat-production)

NOORKA, I. R., & da SILVA, J. A. T. (2012). Mechanistic insight of water stress induced aggregation in wheat (Triticum aestivum L.) quality: the protein paradigm shift. Notulae Scientia Biologicae, 4(4), 32-38.

Majeed, W., Magnuson, M., Hasenkamp, W., Schwarb, H., Schumacher, E. H., Barsalou, L., & Keilholz, S. D. (2011). Spatiotemporal dynamics of low frequency BOLD fluctuations in rats and humans. Neuroimage, 54(2), 1140-1150.

Ahmad, I., F. Muhammad and Aurangzeb. (2013). Breeding bread wheat for low phytic acid using full diallel crosses. Sarhad J. Agric., 29(1): 33-42.

Protic, D., P. Jovin, N. Protic, S. Jankovic and Ž. Jovanovic. (2007). Mass of 1,000 grains in several winter wheat genotypes, at different dates of sowing and rates of nitrogen fertilizer. Romanian Agric. Res., 24: 39-43.

Khodarahmi, M., F. Afshari and R.J. Kamali. (2009). Diallel analysis of Yellow Rust Resistance components in wheat genotypes. CIMMYT staff publications collection. pp. 154.

Afridi, K. (2016). Inheritance of yellow rust resistance and glutenin content in wheat. Ph.D. Dissertation, Department of Plant Breeding and Genetics, The University of Agriculture, Peshawar, Pakistan.

Afridi, K., N.U. Khan, Z. Bibi, S. Gul, R. Gul, S. Ali, N. Ali, I.A. Khalil, F. Uddin and G. Ahmad (2018). Assessment of genetic effects for earliness and yield traits in F1 and F2 half diallel populations of wheat. Int. J. Agric. Biol. 20: 2785-2796.

Akram, Z., S.U. Ajmal, G. Shabbir, M. Munier and N.M. Cheema (2009). Inheritance mechanism of some yield component in bread wheat. Pakistan J. Agric. Res. 22: 1-8.

Akram, Z., S.U. Ajmal, M. Munir and G. Shabbir (2008). Genetic determination of yield related attributes in bread wheat. Sarhad J. Agric. 24(3): 431-437

Esmail, R.M. (2007). Detection of genetic component through triple test cross and line by tester analysis in bread wheat. World J. Agric. Sci. 3(2): 184-190.

Falconer, D. S. (1960). Selection of mice for growth on high and low planes of nutrition. Genetics Research, 1(1), 91-113.

Lopes, M. S., Reynolds, M. P., Jalal-Kamali, M. R., Moussa, M., Feltaous, Y., Tahir, I. S. A., et al. (2012). The yield correlations of selectable physiological traits in a population of advanced spring wheat lines grown in warm and drought environments. F. Crop. Res. 128, 129–136. doi: 10.1016/j.fcr.2011.12.017.

Khayatnezhad, M., Zaeifizadeh, M., and Gholamin, R. (2011). Effect of endseason drought stress on chlorophyll fluorescence and content of antioxidant enzyme superoxide dismutase enzyme (SOD) in susceptible and tolerant genotypes of durum wheat. African J. Agric. Res. 6, 6397–6406. doi: 10.5897/ AJAR11.250.

Downloads

Published

2024-01-21

How to Cite

YASEEN, R., MAHMOOD, T., BHATTI, W., BHATTI, J., AKHTAR, N., RAZA, N., & BIBI, T. (2024). EVALUATING COMBINING ABILITY AND HETEROSIS EFFECTS ON YIELD, ASSOCIATED TRAITS, AND YELLOW RUST RESISTANCE IN WHEAT (TRITICUM AESTIVUM L.). Biological and Clinical Sciences Research Journal, 2024(1), 671. https://doi.org/10.54112/bcsrj.v2024i1.671

Most read articles by the same author(s)