OPTIMIZING MUNGBEAN YIELD AND NUTRITIONAL QUALITY: THE SYNERGISTIC IMPACT OF ZINC-ENRICHED SOIL APPLICATION AND AMINO ACID FOLIAR BOOST
DOI:
https://doi.org/10.54112/bcsrj.v2023i1.616Keywords:
Zinc, Amino acids, Mung bean, Growth, Biochemical, YieldAbstract
Zinc is crucial for chlorophyll production, and soil variables affect its availability for plants by regulating its sorption and desorption, thereby affecting its content. Amino acids are crucial proteins in plants for development, growth, and overall functioning, acting as stress-response molecules that initiate the production and accumulation of certain amino acids in response to environmental stresses. The study was designed in CRD-factorial to check the solo and combined application of amino acids (0 ppm, 250 ppm, and 500 ppm) and zinc (0 ppm, 10 ppm, and 15 ppm) on biochemical, growth, and yield attributes of mung bean. The results showed that total amino acids and phenolics were increased in dose (amino acids 250 + zinc 10) compared to control. In addition, crop growth rate (CGR) was increased in dose (amino acids 500 + zinc 10) over control. The 100-seed weight was also increased in dose (amino acids 250 + zinc 10) compared to control. The crop growth and yield rate decreased by increasing the amino acids and zinc doses. It is suggested to apply the dose (amino acids 250 + zinc 10) for better growth and yield production of mung bean.
Downloads
References
Ahanger, M. A., Morad‐Talab, N., Abd‐Allah, E. F., Ahmad, P., & Hajiboland, R. (2016). Plant growth under drought stress: Significance of mineral nutrients. Water Stress and Crop Plants: A Sustainable Approach, 2, 649–668.
Ahmed, H. G. M.-D., Naeem, M., Faisal, A., Fatima, N., Tariq, S., & Owais, M. (2023). Enriching the Content of Proteins and Essential Amino Acids in Legumes. In Legumes Biofortification (pp. 417–447). Springer.
Akıncı, Ş., & Lösel, D. M. (2012). Plant water-stress response mechanisms. Water Stress, 25, 42.
Al-Zahrani, H. S., Alharby, H. F., Hakeem, K. R., & Rehman, R. U. (2021). Exogenous application of zinc to mitigate the salt stress in Vigna radiata (L.) Wilczek—Evaluation of physiological and biochemical processes. Plants, 10(5), 1005.
Ali, Q., Haider, M. Z., Shahid, S., Aslam, N., Shehzad, F., Naseem, J., Ashraf, R., Ali, A., & Hussain, S. M. (2019). Role of amino acids in improving abiotic stress tolerance to plants. In Plant tolerance to environmental stress (pp. 175–204). CRC Press.
Alloway, B. J. (2009). Soil factors associated with zinc deficiency in crops and humans. Environmental Geochemistry and Health, 31(5), 537–548.
Ashraf, M. A., Ashraf, M., & Ali, Q. (2010). Response of two genetically diverse wheat cultivars to salt stress at different growth stages: leaf lipid peroxidation and phenolic contents. Pak J Bot, 42(1), 559–565.
Bhantana, P., Rana, M. S., Sun, X., Moussa, M. G., Saleem, M. H., Syaifudin, M., Shah, A., Poudel, A., Pun, A. B., & Bhat, M. A. (2021). Arbuscular mycorrhizal fungi and its major role in plant growth, zinc nutrition, phosphorous regulation and phytoremediation. Symbiosis, 84, 19–37.
Cakmak, I., Pfeiffer, W. H., & McClafferty, B. (2010). Biofortification of durum wheat with zinc and iron. Cereal Chemistry, 87(1), 10–20.
Dev, P., Singh, U., Singh, L. N., Shivay, Y. S., Kumar, M., & Raiger, P. R. (2023). Zinc Biofortification of Mungbean (Vigna radiata L.) as Influenced by Varieties and Zinc Fertilization. J. Environ. Agric. Sci, 25(1&2), 1–17.
El Karamany, M. F., Sadak, M. S., & Bakry, B. A. (2019). Improving quality and quantity of mungbean plant via foliar application of plant growth regulators in sandy soil conditions. Bulletin of the National Research Centre, 43(1), 1–7.
Farhangi-Abriz, S., Faegi-Analou, R., & Nikpour-Rashidabad, N. (2017). Polyamines, affected the nitrogen partitioning, protein accumulation and amino acid composition of mung bean under water stress. Journal of Crop Science and Biotechnology, 20, 279–285.
Gupta, N., Ram, H., & Kumar, B. (2016). Mechanism of Zinc absorption in plants: uptake, transport, translocation and accumulation. Reviews in Environmental Science and Bio/Technology, 15, 89–109.
Hildebrandt, T. M., Nesi, A. N., Araújo, W. L., & Braun, H.-P. (2015). Amino acid catabolism in plants. Molecular Plant, 8(11), 1563–1579.
HOSSEN, M. D. F. (2016). COMBINED EFFECTS OF POTASSIUM AND BORON ON THE GROWTH, YIELD AND NUTRIENT CONTENTS OF MUNGBEAN. Department of Agricultural Chemistry, Sher-e-Bangla Agricultural University ….
Kataoka, T., Kaneko, T., Okamoto, H., & Hata, S. (2003). Crop growth estimation system using machine vision. Proceedings 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM 2003), 2, b1079–b1083.
Lee, S., & Lee, D. K. (2018). What is the proper way to apply the multiple comparison test? Korean Journal of Anesthesiology, 71(5), 353–360.
Liu, C., Hu, C., Tan, Q., Sun, X., Wu, S., & Zhao, X. (2019). Co-application of molybdenum and zinc increases grain yield and photosynthetic efficiency of wheat leaves. Plant, Soil and Environment, 65(10), 508–515.
Mahmood, S., Wahid, A., Azeem, M., Zafar, S., Bashir, R., Bajwa, M. O. S., & Ali, S. (2022). Tyrosine or lysine priming modulated phenolic metabolism and improved cadmium stress tolerance in mung bean (Vigna radiata L.). South African Journal of Botany, 149, 397–406.
Majumder, A. L., Sengupta, S., & Goswami, L. (2010). Osmolyte regulation in abiotic stress. Abiotic Stress Adaptation in Plants: Physiological, Molecular and Genomic Foundation, 349–370.
Maret, W., & Li, Y. (2009). Coordination dynamics of zinc in proteins. Chemical Reviews, 109(10), 4682–4707.
Marreiro, D. D. N., Cruz, K. J. C., Morais, J. B. S., Beserra, J. B., Severo, J. S., & De Oliveira, A. R. S. (2017). Zinc and oxidative stress: current mechanisms. Antioxidants, 6(2), 24.
Mehandi, S., Quatadah, S., Mishra, S. P., Singh, I., Praveen, N., & Dwivedi, N. (2019). Mungbean (Vigna radiata L. wilczek): retrospect and prospects. In Legume crops-characterization and breeding for improved food security (pp. 49–66). IntechOpen London.
Moerdijk-Poortvliet, T. C. W., de Jong, D. L. C., Fremouw, R., de Reu, S., de Winter, J. M., Timmermans, K., Mol, G., Reuter, N., & Derksen, G. C. H. (2022). Extraction and analysis of free amino acids and 5′-nucleotides, the key contributors to the umami taste of seaweed. Food Chemistry, 370, 131352.
Morales, F., Ancín, M., Fakhet, D., González-Torralba, J., Gámez, A. L., Seminario, A., Soba, D., Ben Mariem, S., Garriga, M., & Aranjuelo, I. (2020). Photosynthetic metabolism under stressful growth conditions as a bases for crop breeding and yield improvement. Plants, 9(1), 88.
Nair, R. M., Pandey, A. K., War, A. R., Hanumantharao, B., Shwe, T., Alam, A., Pratap, A., Malik, S. R., Karimi, R., & Mbeyagala, E. K. (2019). Biotic and abiotic constraints in mungbean production—progress in genetic improvement. Frontiers in Plant Science, 10, 1340.
Nair, R. M., Yang, R., Easdown, W. J., Thavarajah, D., Thavarajah, P., Hughes, J. d’A, & Keatinge, J. D. H. (2013). Biofortification of mungbean (Vigna radiata) as a whole food to enhance human health. Journal of the Science of Food and Agriculture, 93(8), 1805–1813.
Nair, R., & Schreinemachers, P. (2020). Global status and economic importance of mungbean. The Mungbean Genome, 1–8.
Omar, A. E., Al-Khalaifah, H. S., Mohamed, W. A. M., Gharib, H. S. A., Osman, A., Al-Gabri, N. A., & Amer, S. A. (2020). Effects of phenolic-rich onion (Allium cepa L.) extract on the growth performance, behavior, intestinal histology, amino acid digestibility, antioxidant activity, and the immune status of broiler chickens. Frontiers in Veterinary Science, 7, 582612.
Ozturk, L., Yazici, M. A., Yucel, C., Torun, A., Cekic, C., Bagci, A., Ozkan, H., Braun, H., Sayers, Z., & Cakmak, I. (2006). Concentration and localization of zinc during seed development and germination in wheat. Physiologia Plantarum, 128(1), 144–152.
Palta, J. P. (1990). Leaf chlorophyll content. Remote Sensing Reviews, 5(1), 207–213.
Pasqualone, A., Abdallah, A., & Summo, C. (2020). Symbolic meaning and use of broad beans in traditional foods of the Mediterranean Basin and the Middle East. Journal of Ethnic Foods, 7(1), 39.
Pratap, A., Gupta, S., Basu, P. S., Tomar, R., Dubey, S., Rathore, M., Prajapati, U. S., Singh, P., & Kumari, G. (2019). Towards development of climate smart mungbean: challenges and opportunities. Genomic Designing of Climate-Smart Pulse Crops, 235–264.
Pratap, A., Gupta, S., Rathore, M., Basavaraja, T., Singh, C. M., Prajapati, U., Singh, P., Singh, Y., & Kumari, G. (2021). Mungbean. In The beans and the peas (pp. 1–32). Elsevier.
Roberts, J. A. (2012). Plant growth regulators. Springer Science & Business Media.
Roosta, H. R., Estaji, A., & Niknam, F. (2018). Effect of iron, zinc and manganese shortage-induced change on photosynthetic pigments, some osmoregulators and chlorophyll fluorescence parameters in lettuce. Photosynthetica, 56, 606–615.
Saboor, A., Ali, M. A., Hussain, S., El Enshasy, H. A., Hussain, S., Ahmed, N., Gafur, A., Sayyed, R. Z., Fahad, S., & Danish, S. (2021). Zinc nutrition and arbuscular mycorrhizal symbiosis effects on maize (Zea mays L.) growth and productivity. Saudi Journal of Biological Sciences, 28(11), 6339–6351.
Samreen, T., Shah, H. U., Ullah, S., & Javid, M. (2017). Zinc effect on growth rate, chlorophyll, protein and mineral contents of hydroponically grown mungbeans plant (Vigna radiata). Arabian Journal of Chemistry, 10, S1802–S1807.
Singh, R. (2013). Development of iron and zinc enriched mungbean (Vigna radiata L.) cultivars with agronomic traits in consideration. Wageningen University and Research.
Soares, L. H., Neto, D. D., Fagan, E. B., Teixeira, W. F., dos Reis, M. R., & Reichardt, K. (2016). Soybean seed treatment with micronutrients, hormones and amino acids on physiological characteristics of plants. African Journal of Agricultural Research, 11(35), 3314–3319.
Sreelatha, S., & Padma, P. R. (2009). Antioxidant activity and total phenolic content of Moringa oleifera leaves in two stages of maturity. Plant Foods for Human Nutrition, 64, 303–311.
Tavallali, V., Rahemi, M., Maftoun, M., Panahi, B., Karimi, S., Ramezanian, A., & Vaezpour, M. (2009). Zinc influence and salt stress on photosynthesis, water relations, and carbonic anhydrase activity in pistachio. Scientia Horticulturae, 123(2), 272–279.
Teixeira, W. F., Fagan, E. B., Soares, L. H., Soares, J. N., Reichardt, K., & Neto, D. D. (2018). Seed and foliar application of amino acids improve variables of nitrogen metabolism and productivity in soybean crop. Frontiers in Plant Science, 9, 396.
Torrey, J. G. (1976). Root hormones and plant growth. Annual Review of Plant Physiology, 27(1), 435–459.
Umair Hassan, M., Aamer, M., Umer Chattha, M., Haiying, T., Shahzad, B., Barbanti, L., Nawaz, M., Rasheed, A., Afzal, A., & Liu, Y. (2020). The critical role of zinc in plants facing the drought stress. Agriculture, 10(9), 396.
Wei, C., Jiao, Q., Agathokleous, E., Liu, H., Li, G., Zhang, J., Fahad, S., & Jiang, Y. (2022). Hormetic effects of zinc on growth and antioxidant defense system of wheat plants. Science of The Total Environment, 807, 150992.
Yanishlieva, N. V, Marinova, E., & Pokorný, J. (2006). Natural antioxidants from herbs and spices. European Journal of Lipid Science and Technology, 108(9), 776–793.
Yilmaz, A., Ekiz, H., Torun, B., Gultekin, I., Karanlik, S., Bagci, S. A., & Cakmak, I. (1997). Effect of different zinc application methods on grain yield and zinc concentration in wheat cultivars grown on zinc‐deficient calcareous soils. Journal of Plant Nutrition, 20(4–5), 461–471.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Z MAQSOOD , M ZAFFAR , H AKBAR , M HUMAIYON , M ASAD , S ALI , A MUNIR , M IRFAN , A NAWAZ , W HASSAN
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.