DIVERSITY, MUTATION AND RECOMBINATION ANALYSIS OF CHILLI INFECTING POTYVIRUSES FROM SOUTHEAST ASIA AND CHINA

Authors

  • M ATIF Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
  • F AHMAD School of Food Sciences and Technology, Minhaj University Lahore, Pakistan
  • MT MANZOOR Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
  • K GILANI Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore Pakistan
  • Q ALI Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab Lahore, Pakistan
  • M SARWAR Department of Horticulture, Faculty of Agricultural Sciences, University of the Punjab Lahore, Pakistan
  • S ANJUM Department of Botany, University of the Punjab, Lahore, Pakistan
  • MW ALAM Department of Plant Pathology, University of Okara, Okara, Pakistan
  • A HUSSAIN Department of Agronomy, University of the Punjab, Lahore, Pakistan
  • N RAFAQAT Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan

DOI:

https://doi.org/10.54112/bcsrj.v2022i1.111

Keywords:

Transcription, chilli ring spot virus, potyviruses, recombination, solanaceae

Abstract

The chilli ring spot virus (ChiRSV) is one of the most important viruses of chilli crop in Southeast Asia
and China. Chilli ring spot virus (ChiRSV) has been found the most devastating virus not only for chilli crop but
also for solanaceous crops. In severe cases, up to 100% yield losses have been observed in chilli crop. A large virus
vector population spreads this disease throughout Southeast Asia and China. The diversity of this Potyvirus has
been proven after examination of many samples isolated from different locations in China and Vietnam, which have
shown the virus has successfully prevalent in that part of the world. The phylogenetic investigation of this potyvirus
included 11 full size samples in total. Phylogenetic study of different samples indicates that two sequences
(KT633930, KX379001) are ancestors of all sequences and others are descendants. Later on, with the passage of
time, these sequences (KT633930, KX379001) evolve and different strains, variants and species arrived.
Recombination analysis shows that there is no recombination in any sequence and all sequences are quite unique.
We have also determined replacement frequencies for Potyviruses. According to our findings, ChiRSV is very
important pathogen for not only Solanaceae family but also for other crops because of its presence on different
other host plants.

Downloads

Download data is not yet available.

References

Adams. (2005b). Molecular criteria for genus and species descrimination within the family Potyviridae. Archive of virology, 150, 459-479.

Adams, M.J., Zerbini, F.M., French. R., Rabenstein. F., & Stenger, D.C. (2011). Potyviridae. In: King AM (editor). Virus Taxonomy: Classification and Nomenclature of Viruses: Ninth Report of the International Committee on Taxonomy of Viruses. London, UK: Elsevier.

Ahmed. (2010). Phylogenetic analysis of Bemisia tabaci (Hemiptera: Aleyrodidae) populations from cotton plants in Pakistan, China, and Egypt . Journal of Pest Science, 14, 135-141.

Bisaro. (2006). Silencing suppression by geminivirus proteins. Virology, 158-168.

Botha, A.M. (2010). Transcript profiling of wheat genes expressed during feeding by two different biotypes of Diuraphis noxia . Environmentl Entomoogyl, 39, 1206–1231 .

Briddon. (2003). Diversity of DNA :a satellitemolecule associated with some monopartite begomoviruses. Virology, 106-121.

Balol, G.B., Divya, B.L., Basavaraj, S., Sundaresha, S, Mahesh, Y.S., & Huchannanavar, S.D. (2010). Sources of genetic variation in plant virus populations. Journal of Pure and Applied Microbiology, 4(2), 803-808.

Biebricher, C.K., & Eigen, M. (2006). ‘What is a Quasispecies?. Current Topics in Microbiology and Immunology, 299, 1–31.

Bisimwa, E., Walangululu J., & Bragard, C. (2012). Occurrence and Distribution of cassava mosaic begomovirus related to agro-ecosystems in the Sud-kivu Province, Democratic Republic of Congo. Asian Journal of Plant Pathology, 6, 1–12. doi: 10.3923/ajppaj.2012.1.12.

Bonnet, J., Fraile, A., Sacristán, S., Malpica, J.M. &, García-Arenal, F. (2005). Role of recombination in the evolution of natural populations of Cucumber mosaic virus, a tripartite RNA plant virus. Virology, 332(1) 359-368.

Böttcher, B., Unseld, S., Ceulemans, H., Russell, R.B., & Jeske, H. (2004). Geminate structures of African cassava mosaic virus. Journal of Virology, 78(13), 6758-6765.

Berriei, L.C., Rybicki, E.P., Rey, M.E.C. (2001). Complete nucleotide sequence and host range of South African cassava mosaic virus: further evidence for recombination amongst Begomoviruses. Journal of General Virology, 82, 53-58.

Castillo-Urquiza, G.P., Beserra, J.E.A., Bruckner, F.P., Lima, A.T., Varsani, A., Alfenas-Zerbini, P., & Zerbini, F.M. (2008). Six novel begomoviruses infecting tomato and associated weeds in Southeastern Brazil. Archives of viroogyl, 153(10), 1985-1989.

Cossa, N. M.Sc. thesis. University of the Witwatersrand; Johannesburg, South Africa: Feb 28, 2010. Epidemiology of Cassava Mosaic Disease in Mozambique.

Desbiez, C., & Lecoq, H. (2004). The nucleotide sequence of Watermelon mosaic virus (WMV, Potyvirus) reveals interspecific recombination between two related potyviruses in the 5′ part of the genome. Archives of Virology, 149(8), 1619-1632.

Di Carli, M.B. (2012). Recent insights into plant–virus interactions through proteomic analysis . Journal of Proteome Research, 11, 4765-4780 .

Dong, J.R. (2016). Direct submission . Molecular Plant Pathology, Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, 9 Xueyun Road, Kunming, Yunnan 650223, China .

Drake, J.W. (1991). A constant rate of spontaneous mutation in DNA-based microbes. Proceedings of the National Academy of Sciences, 88(16), 7160-7164.

Duffy, S., & Holmes, E.C. (2008). Phylogenetic evidence for rapid rates of molecular evolution in the single-stranded DNA begomovirus Tomato yellow leaf curl virus. Journal of General Virology, 82, 957-965.

Duffy, S., & Holmes, E.C. (2009). Validation of high rates of nucleotide substitution in geminiviruses: phylogenetic evidence from east african cassava mosaic viruses. Journal of General Virology, 90, 1539-1547.

Duffy, S., Shackelton, L.A., & Holmes, E.C. (2008). Rates of evolutionary change in viruses: patterns and determinants. Nature Reverse Genetics, 9, 267-276.

Eigen, M., Winkler-Oswatitsch, R., Dress, A. (1988). Statistical geometry in sequence space: a method of quantitative comparative sequence analysis. Science USA, 85, 5913-5917.

Fan, J., Negroni, M., & Robertson, D.L. (2007). ‘The Distribution of HIV-1 Recombination Breakpoints’. Infection Genetics and Evolution, 7, 717-723.

Faria, J.C., & Maxwell, D.P. 1999. Variability in geminivirus isolatesa ssociated with Phaseolus spp. in Brazil. Phytopathology, 89, 262-268.

Fondong, V.N., Pita, J.S., Rey, M.E.C., de Kochko, A., Beachy, R.N., & Fauquet, C.M. (2000). Evidence of synergism between African cassava mosaic virus and a new double-recombinant geminivirus infecting cassava in Cameroon. Journal General Virology, 81, 287-297.

Gibbs. (2008). The prehistory of potyviruses: their initial radiation was during the dawn of agriculture . PLoS ONE, 3, e2523.

Goldbach. (1986). Molecular evolution of plant RNA viruses . Annual Review of Plant Phytopathol, 24, 289-310.

Gong, D., Wang, J. H., Lin, Z. S., Zhang, S. Y., Zhang, Y. L., Yu, N. T., & Liu, Z. X. (2011). Genomic sequencing and analysis of Chilli ring spot virus, a novel potyvirus. Virus genes, 43(3), 439-444.

Galvao, R.M., Mariano, A.C., & Luz, D. (2003). A naturally occurring recombinant DNA-A of a typical bipartite begomovirus does not require the cognate DNA-B to infect Nicotiana benthamiana systemically. Journal General Virology, 84, 715-726.

Ge, L., Zhang, J., Zhou, X., & Li, H. (2007). Genetic structure and population variability of tomato yellow leaf curl China virus. Journal of virology, 81(11), 5902-5907.

Grigoras, I., Timchenko, T., Grande-Pérez, A., Katul, L., Vetten, H.J., & Gronenborn, B. (2010). High variability and rapid evolution of a nanovirus. Journal of virology, 84(18), 9105-9117.

Harkins, G.W., Delport, W., & Duffy, S. (2009). Experimental evidence indicating that mastreviruses probably did not co-diverge with their hosts. Virology Journal, 6, 104.

Heath, L., Van Der Walt, E., Varsani, A., & Martin, D.P. (2006). Recombination patterns in aphthoviruses mirror those found in other picornaviruses. Journal of virology, 80(23), 11827-11832.

Holland, J., Spindler, K., Horodyski, F., Grabau, E., Nichol, S., & Vande Pol, S. (1982). Rapid evolution of RNA genomes. Science, 215(4540), 1577-1585.

Ha, C., Revill, P., Harding, R.M., Vu, M., & Dale, J.L. (2008). Identification and sequence analysis of potyviruses infecting crops in Vietnam. Archives of Virology, 153(1), 45-60.

Harlan, J. (1971). Agricultural origins: centres and non centres . Science, 468-474 .

Holcik, M., & Sonenberg, N (2005). Translational control in stress and apoptosis. Nature reviews Molecular cell biology, 6(4), 318-327.

Jian, L. (2014). First report of chilli ring spot virus on Solanum xanthocarpum in china. unpublished .

Jeske, H., Lutgemeier, M., & Preiss, W. (2001). DNA Forms Indicate Rolling Circle and Recombination-Dependent Replication of Abutilon Mosaic Virus, EMBO Journal, 20: 6158-6167.

Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology Evolution, 33, 1870-1874. doi: 10.1093/molbev/msw054.

Kumarvinoth, Tribhuwan, Y.V., & SaumikBasu. (2015). Complexity of Begomovirus and betasatellite populations associated with chili leaf curl disease in India. Journal of General Virology, 96, 3143-3158.

Kader, M.A. (2010). Cytosolic calcium and pH signaling in plants under salinity stress . Plant Signal Behaviour, 5, 233-238.

Liu, X.T., Lima, J.T., & Maxwell, I.O. (2016). Cloning and sequence analysis of the complete nucleotide sequence of Chilli ring spot virus isolates from Hunan . unpublished .

Lava, Kumar. P., Akinbade, S.A., Dixon, A.G.O., Mahungu, N.M., Mutunda, M.P., Kiala, D., Londa, L., & Legg, J.P. (2009). First report of the occurrence of East African cassava mosaic virus-Uganda (EACMV-UG) in Angola. Plant Pathology, 58, 402.

Lima, A. T., Sobrinho, R. R., Gonzalez-Aguilera, J., Rocha, C. S., Silva, S. J., Xavier, C. A., & Zerbini, F. M. (2013). Synonymous site variation due to recombination explains higher genetic variability in begomovirus populations infecting non-cultivated hosts. Journal of General Virology, 94(2), 418-431.

Lima, A., Silva, J. C., Silva, F. N., Castillo-Urquiza, G. P., Silva, F. F., Seah, Y. M., & Zerbini, F. M. (2017). The diversification of begomovirus populations is predominantly driven by mutational dynamics. Virus evolution, 3(1).

Liu, H., Boulton, M. I., & Davies, J. W. (1997). Maize streak virus coat protein binds single-and double-stranded DNA in vitro. Journal of general virology, 78(6), 1265-1270.

Lefeuvre., & Moriones. (2015). Recombination as a motor of host switches and virus emergence: Geminiviruses as case studies. Current Opinion in Virology,10, 14-19.

Mayee, C. D., Kaul, D. L., & Thakur, M. R. (1975). A method for field evaluation of resistance of chilli to leaf curl disease/Über eine Methode zur Bewertung der Resistenz von Paprika gegen tobacco leaf curl-Virus. Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz/Journal of Plant Diseases and Protection, 566-569.

Martin, D. P., Biagini, P., Lefeuvre, P., Golden, M., Roumagnac, P., & Varsani, A. (2011). Recombination in eukaryotic single stranded DNA viruses. Viruses, 3(9), 1699-1738.

Monci, F., Sánchez-Campos, S., Navas-Castillo, J., & Moriones, E. (2002). A natural recombinant between the geminiviruses Tomato yellow leaf curl Sardinia virus and Tomato yellow leaf curl virus exhibits a novel pathogenic phenotype and is becoming prevalent in Spanish populations. Virology, 303(2), 317-326.

Moriones, E., & Navas-Castillo, J. (2000). Tomato yellow leaf curl virus, an emerging virus complex causing epidemics worldwide. Virus Research, 71,123-134.

Martin, D. P., Murrell, B., Golden, M., Khoosal, A., & Muhire, B. (2015). RDP4: Detection and analysis of recombination patterns in virus genomes. Virus evolution, 1(1).

Muhire, B. M., Varsani, A., & Martin, D. P. (2014). SDT: a virus classification tool based on pairwise sequence alignment and identity calculation. PloS one, 9(9), e108277.

Padidam, M., Sawyer, S., & Fauquet, C. M. (1999). Possible emergence of new geminiviruses by frequent recombination. Virology, 265(2), 218-225.

Palukaitis., & García-Arenal F. (2003). Cucumoviruses. Advances in Virus Research, 62, 241-323.

Paprotka, T., Metzler, V., & Jeske, H. (2010b). The first DNA 1-like alpha satellites in association with New World begomoviruses in natural infections. Virology, 404, 148-157.

Pita, J. S., Fondong, V. N., Sangare, A., Otim-Nape, G. W., Ogwal, S., & Fauquet, C. M. (2001). Recombination, pseudorecombination and synergism of geminiviruses are determinant keys to the epidemic of severe cassava mosaic disease in Uganda. Journal of General Virology, 82(3), 655-665.

Patil, B.L., & Fauquet, C.M. (2009). Cassava mosaic geminiviruses: Actual knowledge and perspectives. Molecular Plant Pathology, 10, 685-701.

Prasanna, H.C., & Rai, M. (2007). ‘Detection and Frequency of Recombination in Tomato-Infecting Begomoviruses of South and Southeast Asia’. Virology Journal, 4, 111.

Ong, C.A., Varghese, G., & Ting, W.P. (1980). The effect of chilli veinal mottle virus on yield of chilli (Capsicum annuum L. MARDI Research Bulletin., 8(1), 74-78.

Olspert, A., Chung, B. Y. W., Atkins, J. F., Carr, J. P., & Firth, A. E. (2015). Transcriptional slippage in the positive‐sense RNA virus family Potyviridae. EMBO reports, 16(8), 995-1004.

Prasch, C. M. (2013). Simultaneous application of heat, drought, and virus to Arabidopsis plants reveals significant shifts in signaling networks. Plant Physiology, 162, 1849-1866 .

Rajamaki, M.L, Maki-Valkama, T., Makinen, K., & Valkonen, J. P. (2009). Infection with potyviruses. Annual Plant Reviews, Plant-Pathogen Interactions, 11, 68.

Ramos-Sobrinho, R., Silva, S.J.C., & Silva, T.A.L. (2010). Genetic structure of a population of the begomovirus Bean golden mosaic virus (BGMV) that infects lima bean (Phaseolus lunatus L.) in the state of Alagoas, Brazil. In: Program and Abstracts, 6th International Geminivirus Symposium and 4th International ssDNA Comparative Virology Workshop., 2010, Guanajuato, Mexico.

Ribeiro, S.G., Martin, D.P., Lacorte, C., Simoes, I.C., Orlandini, D.R.S., & Inoue-Nagata, A.K. (2007). Molecular and biological characterization of Tomato chlorotic mottle virus suggests that recombination underlies the evolution and diversity of Brazilian tomato begomoviruses. Phytopathology, 97, 702-711.

Roye, M.E., Spence, J., McLaughlin, W.A., &Maxwell, D.P. (1999). The common weed Macroptilium lathyroides is not a source of crop-infecting geminiviruses from Jamaica. Tropical Agriculture, 76, 256-262.

Rodamilans, B., Valli, A., Mingot, A., San León, D., Baulcombe, D., López-Moya, J. J., & García, J. A. (2015). RNA polymerase slippage as a mechanism for the production of frameshift gene products in plant viruses of the Potyviridae family. Journal of Virology, 89(13), 6965-6967.

Suntio. (2012). Abiotic stress responses promote Potato virus A infection in Nicotiana benthamiana . Molecular Plant Pathology., 13, 775-784 .

Sztuba-Solin,´J.S. (2011). Subgenomic messenger RNAs: mastering regulation of (+)-strand RNA virus life cycle. Virology, 412, 245-255.

Saleem, H., Nahid, N., Shakir, S., Ijaz, S., Murtaza, G., Khan, A. A., & Nawaz-ul-Rehman, M. S. (2016). Diversity, mutation and recombination analysis of cotton leaf curl geminiviruses. PLoS One, 11(3), e0151161.

Sanz, A. I., Fraile, A., Garcı́a-Arenal, F., Zhou, X., Robinson, D. J., Khalid, S., & Harrison, B. D. (2000). Multiple infection, recombination and genome relationships among begomovirus isolates found in cotton and other plants in Pakistan. Journal of General Virology, 81(7), 1839-1849.

Shackelton, & Holmes, E.C. (2006). Phylogenetic Evidence for the Rapid Evolution of Human B19 Erythrovirus. Journal of Virology, 80, 3666-3669.

Shackelton, L.A., Parrish, C.R., Truyen, U., & Holmes, E.C. (2005). High rate of viral evolution associated with the emergence of carnivore parvovirus. Proceedings of the National Academy of Sciences, 102(2), 379-384.

Shakir, S., Nawaz-ul-Rehman, M.S., & Mubin, M. (2018). Characterization, phylogeny and recombination analysis of Pedilanthus leaf curl virus-Petunia isolate and its associated betasatellite. Virology Journal, 15, 134 https://doi.org/10.1186/s12985-018-1047-y .

Silva, F.N., Lima, A.T., Rocha, C.S., Castillo-Urquiza, G.P., Alves-Júnior, M., & Zerbini, F.M. (2014). Recombination and pseudorecombination driving the evolution of the begomoviruses Tomato severe rugose virus (ToSRV) and Tomato rugose mosaic virus (ToRMV): two recombinant DNA-A components sharing the same DNA-B. Virology journal, 11(1), 1-11.

Tahir, M. H. (2010). Chili leaf curl betasatellite is associated with a distinct recombinant begomovirus, Pepper leaf curl Lahore virus, in Capsicum in Pakistan. Virus Research, 149 (1),109-114 .

Unseld, S., Höhnle, M., Ringel, M., & Frischmuth, T. (2001). Subcellular targeting of the coat protein of African cassava mosaic geminivirus. Virology, 286(2), 373-383.

Varsani, A., van der Walt, E., Heath, L., Rybicki, E. P., Williamson, A. L., & Martin, D. P. (2006). Evidence of ancient papillomavirus recombination. Journal of General Virology, 87(9), 2527-2531.

Varsani, A., Shepherd, D. N., Monjane, A. L., Owor, B. E., Erdmann, J. B., Rybicki, E. P., ... & Martin, D. P. (2008). Recombination, decreased host specificity and increased mobility may have driven the emergence of maize streak virus as an agricultural pathogen. The Journal of general virology, 89(Pt 9), 2063.

Worobey, M., & Holmes, E.C. (1999). Evolutionary Aspects of Recombination in RNA Viruses. Journal of General Virology, 80, 2535-2545.

Yang, H., Huang, Y., Zhi, H., Yu, D. (2011). Proteomics-based analysis of novel genes involved in response toward soybean mosaic virus infection. Molecular biology reports, 38(1), 511-521.

Zaidi, S.S., Martin, D.P., Amin. I., Farooq, M., & Mansoor, S., (2016). Tomato leaf curl New Delhi virus; a widespread bipartite begomovirus in the territory of monopartite begomoviruses. Molecular Plant Pathology, 2016.

Zhang, Wei., Olson, N.H., Baker, T.S., Faulkner, L., Agbandje-McKenna, M., Boulton, M.I., Davies, J.W., & McKenna, R. (2001). Structure of the Maize streak virus geminate particle. Virology, 279, 471-477.

Zhou, X., Liu, Y., Calvert, L., Munoz, C., Otim-Nape, G.W., Robinson, D.J., & Harrison, B.D. (1997). Evidence that DNA-A of a geminivirus associated with severe cassava mosaic disease in Uganda has arisen by interspecific recombination. Journal General Virology, 78(8), 2101-2111.

Downloads

Published

2022-10-10

How to Cite

ATIF, M., AHMAD, F., MANZOOR, M., GILANI, K., ALI, Q., SARWAR, M., ANJUM, S., ALAM, M., HUSSAIN, A., & RAFAQAT, N. (2022). DIVERSITY, MUTATION AND RECOMBINATION ANALYSIS OF CHILLI INFECTING POTYVIRUSES FROM SOUTHEAST ASIA AND CHINA. Biological and Clinical Sciences Research Journal, 2022(1). https://doi.org/10.54112/bcsrj.v2022i1.111

Issue

Section

Original Research Articles

Most read articles by the same author(s)

<< < 1 2 3 4 5 6 7 8 9 10 > >>