ADSORPTION OF ORGANIC COMPOUNDS AND HAZARDOUS MICROORGANISMS FROM SEWAGE AND SURFACTANT-CONTAINING WASTEWATER USING CARBON-BASED NANOMATERIALS: A FOCUS ON GRAPHENE OXIDE AND CARBON NANOTUBE
DOI:
https://doi.org/10.54112/bcsrj.v2024i1.1052Keywords:
Graphene Oxide, Carbon Nanotubes, Wastewater Treatment, Adsorption, NanotechnologyAbstract
This review comprehensively examines the utilization of carbon-based nanomaterials, specifically graphene oxide (GO) and carbon nanotubes (CNTs), in advanced wastewater treatment applications. GO and CNTs demonstrate exceptional efficacy in adsorbing a broad spectrum of organic compounds and hazardous microorganisms due to their unique physicochemical properties, such as large specific surface areas, high aspect ratios, and versatile chemical modifications enabled by functional groups. GO is characterised by abundant oxygen-containing groups, including hydroxyl, carboxyl, and epoxy, which enhance its hydrophilicity and adsorption potential for cationic pollutants. Meanwhile, CNTs, available as single-walled (SWCNTs) and multi-walled (MWCNTs), are noted for their tubular structure, high tensile strength, and significant electrical conductivity, making them highly effective in adsorbing organic molecules and heavy metals. The review explores the mechanisms of action of these nanomaterials, which encompass physical adsorption through van der Waals forces and π-π interactions, as well as chemical adsorption involving covalent or ionic bond formation with contaminants. Recent innovations in hybrid systems that integrate GO and CNTs with other technologies, such as photocatalysis and membrane filtration, are highlighted for enhancing contaminant removal and energy efficiency in water purification processes. The review addresses critical challenges related to nanoparticle stability, recovery, production costs, and the environmental and health impacts of deploying these nanomaterials in practical applications. Crucial issues, such as nanoparticle aggregation, reusability, and the safe disposal of used materials, are identified, with potential solutions including surface modifications to improve dispersion and the incorporation of magnetic nanoparticles for easier recovery. The findings emphasise the significant potential of GO and CNTs in advancing environmental remediation technologies, offering promising avenues for developing cleaner and more efficient water treatment solutions. As the field progresses, the continued exploration and interdisciplinary collaboration promise substantial water purification and environmental protection advancements.
Downloads
References
Abbas, R., Ullah, Q., Javaid, R., Safdar, A., Fatima, R., Nadeem, F., & Naz, K. Genetically Modified Organisms (GMOs) in Agriculture: A Comprehensive Review of Environmental Impacts. Benefits, and Concerns.
Ahmadi, Y., & Kim, K.-H. (2024). Modification strategies for visible-light photocatalysts and their performance-enhancing effects on photocatalytic degradation of volatile organic compounds. Renewable and sustainable energy reviews, 189, 113948.
Ahmed, A. S., Billah, M. M., Ali, M. M., Bhuiyan, M. K. A., Guo, L., Mohinuzzaman, M., . . . Yan, M. (2023). Microplastics in aquatic environments: A comprehensive review of toxicity, removal, and remediation strategies. Science of The Total Environment, 876, 162414.
Alcolea-Rodriguez, V., Portela, R., Calvino-Casilda, V., & Bañares, M. (2024). In chemico methodology for engineered nanomaterials categorization according to number, nature and oxidative potential of reactive surface sites. Environmental Science: Nano.
Ali, A., Koloor, S. S. R., Alshehri, A. H., & Arockiarajan, A. (2023). Carbon nanotube characteristics and enhancement effects on the mechanical features of polymer-based materials and structures–A review. Journal of Materials Research and Technology, 24, 6495-6521.
Ayreen, Z., Khatoon, U., Kirti, A., Sinha, A., Gupta, A., Lenka, S. S., . . . Mishra, R. (2024). Perilous paradigm of graphene oxide and its derivatives in biomedical applications: Insight to immunocompatibility. Biomedicine & Pharmacotherapy, 176, 116842.
Baig, A., Sial, S. A., Qasim, M., Ghaffar, A., Ullah, Q., Haider, S., . . . Ather, N. (2024). Harmful Health Impacts of Heavy Metals and Behavioral Changes in Humans. Indonesian Journal of Agriculture and Environmental Analytics, 3(2), 77-90.
Batool, F., Ali, M. S., Hussain, S., Shahid, M., Mahmood, F., Shahzad, T., . . . Ullah, Q. (2024). Bioreduction and biosorption of chromium: Unveiling the role of bacteria Bio-organic Amendments for Heavy Metal Remediation (pp. 279-296): Elsevier.
Bleeker, E. A., Swart, E., Braakhuis, H., Cruz, M. L. F., Friedrichs, S., Gosens, I., . . . Kettelarij, J. A. (2023). Towards harmonisation of testing of nanomaterials for EU regulatory requirements on chemical safety–A proposal for further actions. Regulatory Toxicology and Pharmacology, 139, 105360.
Bolan, S., Padhye, L. P., Mulligan, C. N., Alonso, E. R., Saint-Fort, R., Jasemizad, T., . . . Wang, H. (2023). Surfactant-enhanced mobilization of persistent organic pollutants: potential for soil and sediment remediation and unintended consequences. Journal of Hazardous Materials, 443, 130189.
Chávez-Hernández, J. A., Velarde-Salcedo, A. J., Navarro-Tovar, G., & Gonzalez, C. (2024). Safe nanomaterials: from their use, application and disposal to regulations. Nanoscale advances.
Darvishi, P., Mousavi, S. A., Mahmoudi, A., & Nayeri, D. (2023). A comprehensive review on the removal of antibiotics from water and wastewater using carbon nanotubes: synthesis, performance, and future challenges. Environmental Science: Water Research & Technology, 9(1), 11-37.
Das, R., Hoysall, C., & Rao, L. (2023). Unveiling the origin, fate, and remedial approaches for surfactants in sewage-fed foaming urban (Bellandur) Lake. Environmental Pollution, 339, 122773.
Demirbaş, K., & Çevik, S. (2020). Regulatory policies for safety of nanomaterials. Open Journal of Nano, 5(1), 1-16.
Doak, S. H., Andreoli, C., Burgum, M. J., Chaudhry, Q., Bleeker, E. A., Bossa, C., . . . Jeliazkova, N. (2023). Current status and future challenges of genotoxicity OECD Test Guidelines for nanomaterials: a workshop report: Oxford University Press UK.
Dong, S., Dong, Y., Zhao, Z., Liu, J., Liu, S., Feng, L., . . . Yang, P. (2023). “Electron transport chain interference” strategy of amplified mild-photothermal therapy and defect-engineered multi-enzymatic activities for synergistic tumor-personalized suppression. Journal of the American Chemical Society, 145(17), 9488-9507.
Fantini, J., Matveeva, M., Lefebvre, M., & Chahinian, H. (2024). What Is life? Rethinking Biology in Light of Fundamental Parameters. life, 14(3), 280.
Fatima, R., Basharat, U., Safdar, A., Haidri, I., Fatima, A., Mahmood, A., . . . Qasim, M. (2024). AVAILABILITY OF PHOSPHOROUS TO THE SOIL, THEIR SIGNIFICANCE FOR ROOTS OF PLANTS AND ENVIRONMENT. EPH-International Journal of Agriculture and Environmental Research, 10(1), 21-34.
Fatima, T., & Mushtaq, A. (2023). Efficacy and challenges of carbon-based nanomaterials in water treatment: A review. Int. J. Chem. Biochem. Sci, 23, 232-248.
Fida, M., Li, P., Wang, Y., Alam, S. K., & Nsabimana, A. (2023). Water contamination and human health risks in Pakistan: a review. Exposure and Health, 15(3), 619-639.
Gamoń, F., Ziembińska-Buczyńska, A., Łukowiec, D., & Tomaszewski, M. (2023). Ecotoxicity of selected carbon-based nanomaterials. International Journal of Environmental Science and Technology, 20(9), 10153-10162.
Ganesan, N. G., Singh, R. D., Kapila, S., & Rangarajan, V. (2024). The imminent potential of microbial surfactants in PPCP waste removal Development in Wastewater Treatment Research and Processes (pp. 309-335): Elsevier.
Ghulam, A. N., Dos Santos, O. A., Hazeem, L., Pizzorno Backx, B., Bououdina, M., & Bellucci, S. (2022). Graphene oxide (GO) materials—Applications and toxicity on living organisms and environment. Journal of Functional Biomaterials, 13(2), 77.
Gorgaslidze, N., Sulashvili, N., Gabunia, L., Pruidze-Liparteliani, N., & Giorgobiani, M. (2024). The Impact of Pharmaceuticals on the Ecology and Human Health. World of Medicine: Journal of Biomedical Sciences, 1(4), 65-89.
Gul, A., Khaligh, N. G., & Julkapli, N. M. (2021). Surface modification of carbon-based nanoadsorbents for the advanced wastewater treatment. Journal of Molecular Structure, 1235, 130148.
Haidri, I., Qasim, M., Shahid, M., Farooq, M. M., Abbas, M. Q., Fatima, R., . . . Ullah, Q. (2024). Enhancing the Antioxidant Enzyme Activities and Soil Microbial Biomass of tomato plants against the stress of Sodium Dodecyl Sulfate by the application of bamboo biochar. Remittances Review, 9(2), 1609-1633.
Hartal, O., Haddaji, C., Anouzla, A., Madinzi, A., & Souabi, S. (2023). Recent Advances in Physicochemical and Biological Techniques for the Management of Discharges Loaded with Surfactants. Chemical and Biochemical Engineering Quarterly, 37(1), 1-16.
Hristozov, D., Badetti, E., Bigini, P., Brunelli, A., Dekkers, S., Diomede, L., . . . Giubilato, E. (2024). Next Generation Risk Assessment approaches for advanced nanomaterials: Current status and future perspectives. NanoImpact, 100523.
Hsu, C.-Y., Rheima, A. M., Mohammed, M. S., Kadhim, M. M., Mohammed, S. H., Abbas, F. H., . . . Hachim, S. K. (2023). Application of carbon nanotubes and graphene-based nanoadsorbents in water treatment. BioNanoScience, 13(4), 1418-1436.
Hu, Q., Lan, R., He, L., Liu, H., & Pei, X. (2023). A critical review of adsorption isotherm models for aqueous contaminants: Curve characteristics, site energy distribution and common controversies. Journal of environmental management, 329, 117104.
Hu, X.-L., Shang, Y., Yan, K.-C., Sedgwick, A. C., Gan, H.-Q., Chen, G.-R., . . . Chen, D. (2021). Low-dimensional nanomaterials for antibacterial applications. Journal of Materials Chemistry B, 9(17), 3640-3661.
Ibrahim, A. S., Farage, D. A., & Ali, G. A. (2023). Biodegradation of carbon nanotubes Handbook of biodegradable materials (pp. 643-676): Springer.
Isibor, P. O. (2024). Regulations and policy considerations for nanoparticle safety Environmental Nanotoxicology: Combatting the Minute Contaminants (pp. 295-316): Springer.
Jena, G., Dutta, K., & Daverey, A. (2023). Surfactants in water and wastewater (greywater): environmental toxicity and treatment options. Chemosphere, 341, 140082.
Kanani-Jazi, M. H., & Akbari, S. (2024). Quantitative XPS analysis of amine-terminated dendritic functionalized halloysite nanotubes decorated on PAN nanofibrous membrane and adsorption/filtration of Cr (VI). Chemical Engineering Journal, 482, 148746.
Khalfallah, A. (2023). Structure and Applications of Surfactants Surfactants-Fundamental Concepts and Emerging Perspectives: IntechOpen.
Khan, A. H. A., & Barros, R. (2023). Pharmaceuticals in water: risks to aquatic life and remediation strategies. Hydrobiology, 2(2), 395-409.
Khovavko, A., Strativnov, E., Nebesnyi, A., Filonenko, D., Sviatenko, O., Piatova, A., & Barabash, M. (2024). Synthesis of Carbon Nanotubes from Products of Conversion of Hydrocarbons Carbon Nanostructured Materials: Synthesis, Characterization, and Industrial Applications (pp. 1-68): Springer.
Kim, H.-N., Kim, J.-H., Kim, I., & Yoon, I.-H. (2023). Magnetic flocculants and selective adsorbents for the decontamination of radioactive and acidic soil-washing effluent. Journal of Water Process Engineering, 54, 103964.
Kong, Q., Zhang, H., Lan, Y., Shi, X., Fang, Z., Chang, Q., . . . Wei, C. (2023). Functional graphene oxide for organic pollutants removal from wastewater: a mini review. Environmental Technology, 44(21), 3183-3195.
Kotun, B. C., Adewara, O. A., Adebayo-Olajide, T. C., Ayedun, J. S., Oyetunji, O. E., Iyiola, C. O., & Ogunbanwo, S. T. (2023). Application of Magnetic Surfactants in the Removal of Pollutants and Microbes Magnetic Surfactants: Design, Chemistry and Utilization (pp. 65-83): ACS Publications.
Krishna, R. H., Chandraprabha, M., Samrat, K., Murthy, T. K., Manjunatha, C., & Kumar, S. G. (2023). Carbon nanotubes and graphene-based materials for adsorptive removal of metal ions–a review on surface functionalization and related adsorption mechanism. Applied Surface Science Advances, 16, 100431.
Kumar, Y., Sinha, A., Nigam, K., Dwivedi, D., & Sangwai, J. S. (2023). Functionalized nanoparticles: Tailoring properties through surface energetics and coordination chemistry for advanced biomedical applications. Nanoscale, 15(13), 6075-6104.
Kumari, R., Suman, K., Karmakar, S., Mishra, V., Lakra, S. G., Saurav, G. K., & Mahto, B. K. (2023). Regulation and safety measures for nanotechnology-based agri-products. Frontiers in Genome Editing, 5, 1200987.
Kwiatkowska, A., & Granicka, L. H. (2023). Anti-Viral Surfaces in the Fight against the Spread of Coronaviruses. Membranes, 13(5), 464.
Labuda, J., Barek, J., Gajdosechova, Z., Goenaga-Infante, H., Johnston, L. J., Mester, Z., & Shtykov, S. (2023). Analytical chemistry of engineered nanomaterials: Part 1. Scope, regulation, legislation, and metrology (IUPAC Technical Report). Pure and Applied Chemistry, 95(2), 133-163.
Lavrikova, A., Dadi, N. C. T., Bujdáková, H., & Hensel, K. (2024). Inactivation pathways of Escherichia coli and Staphylococcus aureus induced by transient spark discharge in liquids. Plasma Processes and Polymers, 21(5), 2300147.
Leroy, M. (2023). Investigation of the effects of a multistress combining a historical contaminant and an emerging contaminant in agrosystems: the case of carbon nanotubes and metallic trace elements. Institut National Polytechnique de Toulouse-INPT.
Li, X., Li, J., Wang, Z., Bol, R., & Zou, H. (2024). Heteroaggregation of carbon nanomaterials with mineral-based nanomaterials: A review. Journal of Environmental Chemical Engineering, 113594.
Lima, É. C., Adebayo, M. A., & Machado, F. M. (2015). Kinetic and equilibrium models of adsorption. Carbon nanomaterials as adsorbents for environmental and biological applications, 33-69.
Luo, H., Tu, C., He, D., Zhang, A., Sun, J., Li, J., . . . Pan, X. (2023). Interactions between microplastics and contaminants: A review focusing on the effect of aging process. Science of The Total Environment, 165615.
Maksimova, Y., Zorina, A., & Nesterova, L. (2023). Oxidative stress response and E. Coli biofilm formation under the effect of pristine and modified carbon nanotubes. Microorganisms, 11(5), 1221.
Mascarenhas, R., Mathur, T., Maheshwari, J., & Nagella, P. (2023). Interaction of Nanomaterials with Plant Macromolecules: Nucleic Acid, Proteins and Hormones Nanomaterial Interactions with Plant Cellular Mechanisms and Macromolecules and Agricultural Implications (pp. 231-271): Springer.
Mohamed Nasser, S., Abbas, M., & Trari, M. (2024). Understanding the rate-limiting step adsorption kinetics onto biomaterials for mechanism adsorption control. Progress in Reaction Kinetics and Mechanism, 49, 14686783241226858.
Mondal, P., Nandan, A., Ajithkumar, S., Siddiqui, N. A., Raja, S., Kola, A. K., & Balakrishnan, D. (2023). Sustainable application of nanoparticles in wastewater treatment: Fate, current trend & paradigm shift. Environmental research, 232, 116071.
Mubeen, B., Hasnain, A., Wang, J., Zheng, H., Naqvi, S. A. H., Prasad, R., . . . Farhan, M. (2023). Current progress and open challenges for combined toxic effects of manufactured nano-sized objects (MNO’s) on soil biota and microbial community. Coatings, 13(1), 212.
Naaz, T., Kumar, A., Vempaty, A., Singhal, N., Pandit, S., Gautam, P., & Jung, S. P. (2023). Recent advances in biological approaches towards anode biofilm engineering for improvement of extracellular electron transfer in microbial fuel cells. Environmental Engineering Research, 28(5).
Omar, H., Malek, N., Nurfazianawatie, M., Rosman, N., Bunyamin, I., Abdullah, S., . . . Asli, N. (2023). A review of synthesis graphene oxide from natural carbon based coconut waste by Hummer’s method. Materials Today: Proceedings, 75, 188-192.
PAYYAPPILLY, S. S., BABY, M. M., SUNNY, S., & MISHRA, A. K. (2024). Synthesis and Fabrication of Graphene and Reduced Graphene Oxide. Functional Nanocomposites and Their Applications, 1.
Priyadarshini, M., Ahmad, A., Das, S., & Ghangrekar, M. M. (2022). Application of innovative electrochemical and microbial electrochemical technologies for the efficacious removal of emerging contaminants from wastewater: A review. Journal of Environmental Chemical Engineering, 10(5), 108230.
Qiu, C., Jiang, L., Gao, Y., & Sheng, L. (2023). Effects of oxygen-containing functional groups on carbon materials in supercapacitors: A review. Materials & Design, 230, 111952.
Rovida, C., Busquet, F., Leist, M., & Hartung, T. (2023). REACH out-numbered! The future of REACH and animal numbers. ALTEX-Alternatives to animal experimentation, 40(3), 367-388.
Rudyak, V., Pryazhnikov, M., Minakov, A., & Shupik, A. (2024). Electrical conductivity of nanofluids with single-and multi-walled carbon nanotubes. Experimental study. Nano-Structures & Nano-Objects, 38, 101143.
Sacco, L. N., & Vollebregt, S. (2023). Overview of engineering carbon nanomaterials such as carbon nanotubes (CNTs), carbon nanofibers (CNFs), graphene and nanodiamonds and other carbon allotropes inside porous anodic alumina (PAA) templates. Nanomaterials, 13(2), 260.
Sahoo, T. R., & Prelot, B. (2020). Adsorption processes for the removal of contaminants from wastewater: the perspective role of nanomaterials and nanotechnology Nanomaterials for the detection and removal of wastewater pollutants (pp. 161-222): Elsevier.
Schoonjans, R., Castenmiller, J., Chaudhry, Q., Cubadda, F., Daskaleros, T., Franz, R., . . . Oomen, A. G. (2023). Regulatory safety assessment of nanoparticles for the food chain in Europe. Trends in Food Science & Technology, 134, 98-111.
Seidel, C., Sébillaud, S., Darne, C., Barthel, H., & Gaté, L. (2023). 104 Influence of the physicochemical properties of multi-walled carbon nanotubes on their toxicity in lung cells. Annals of Work Exposures and Health, 67(Supplement_1), i96-i96.
Shinde, S. A., More, P. R., & Ingle, A. P. (2023). Hazardous effects of nanomaterials on aquatic life Nanotechnology in Agriculture and Agroecosystems (pp. 423-450): Elsevier.
Siddique, A. B., Munni, A., Hasan, M., Raj, R., Mutalib, M. A., Sikder, M. T., . . . Hossain, M. S. (2024). Investigation and detection of multiple antibiotic-resistant pathogenic bacteria in municipal wastewater of Dhaka city. Discover Water, 4(1), 52.
Skłodowski, K., Chmielewska-Deptuła, S. J., Piktel, E., Wolak, P., Wollny, T., & Bucki, R. (2023). Metallic nanosystems in the development of antimicrobial strategies with high antimicrobial activity and high biocompatibility. International Journal of Molecular Sciences, 24(3), 2104.
Subhan, M. A., Subhan, T., Choudhury, K. P., & Neogi, N. (2024). Safety measures, regulations, ethical, and legal issues for nanomaterials Handbook of Nanomaterials, Volume 2 (pp. 791-828): Elsevier.
Ullah, Q., Qasim, M., Abaidullah, A., Afzal, R., Mahmood, A., Fatima, A., & Haidri, I. (2024a). EXPLORING THE INFLUENCE OF NANOPARTICLES AND PGPRS ON THE PHYSICO-CHEMICAL CHARACTERISTICS OF WHEAT PLANTS: A REVIEW. EPH-International Journal of Agriculture and Environmental Research, 10(1), 1-9.
Ullah, Q., Qasim, M., Ghaffar, A., Haidri, I., Munir, T., Chawla, M., . . . Ismail, M. (2024b). Harnessing Plant Growth-Promoting Rhizobacteria (PGPRs) for Sustainable Management of Rice Blast Disease Caused by Magnaporthe Oryzae: Strategies and Remediation Techniques in Indonesia. Indonesian Journal of Agriculture and Environmental Analytics, 3(2), 65-76.
Ummer, K., Khan, W., Iqbal, M. A., Abbas, M. Q., Batool, R., Afzal, R., . . . Haidri, I. (2023). THE INTRICACIES OF PHOTOCHEMICAL SMOG: FROM MOLECULAR INTERACTIONS TO ENVIRONMENTAL IMPACT. EPH-International Journal of Applied Science, 9(2), 23-33.
Wang, J., Jiao, D., Yuan, S., Chen, H., Dai, J., Wang, X., . . . Qiu, D. (2024). Comparative analysis of microbial community under acclimation of linear alkylbenzene sulfonate (LAS) surfactants and degradation mechanisms of functional strains. Journal of Hazardous Materials, 135370.
Waseem, M., Abbas, M. Q., Ummer, K., Fatima, R., Khan, W., Gulzar, F., . . . Haidri, I. (2023). PHYTO-REMEDIES FOR SOIL RESTORATION: A DEEP DIVE INTO BRASSICA'S PLANT CAPABILITIES IN CADMIUM REMOVAL. EPH-International Journal of Biological & Pharmaceutical Science, 9(1), 23-44.
You, X., Chen, C., Yang, L., Xia, X., Zhang, Y., & Zhou, X. (2023). Physiological and morphological responses of Chlorella pyrenoidosa to different exposure methods of graphene oxide quantum dots. Science of The Total Environment, 854, 158722.
Zhao, G., Chen, T., Tang, A., & Yang, H. (2024). Roles of Oxygen‐Containing Functional Groups in Carbon for Electrocatalytic Two‐Electron Oxygen Reduction Reaction. Chemistry–A European Journal, 30(29), e202304065.
Zhu, L., Hajeb, P., Fauser, P., & Vorkamp, K. (2023). Endocrine disrupting chemicals in indoor dust: A review of temporal and spatial trends, and human exposure. Science of The Total Environment, 874, 162374.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 A YOUNAS , M RASHAD , A RAFAQAT , H MAQBOOL , K GUL , M AHMAD , J SHAHBAZ , KU KANWAL , M UMAIR
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.