CROP IMPROVEMENT THROUGH DIFFERENT MEANS TO ADDRESS CLIMATE CHANGE AND FOOD SECURITY

Authors

  • A AHMAD Department of Agronomy, Muhammad Nawaz Sharif University of Agriculture Multan, Pakistan
  • HAB AMIN Agriculture Research & Facilitation Complex, Chappu, Pakistan
  • UR ZAINAB Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Pakistan
  • T JAVAID Potato Research Institute, Sahiwal, Pakistan
  • RA IQBAL Potato Research Institute, Sahiwal, Pakistan
  • MA KHALID Pesticide Quality Control Lab, AARI, Faisalabad, Pakistan
  • F SHAMIM Rice Research Institute Kala Shah Kaku, Pakistan
  • NH KHAN Professional Training and Skill Development Centre, University of Agriculture Faisalabad, Pakistan
  • HM AHMAD 8Department of Forestry and Range Management University of Agriculture Faisalabad, Pakistan
  • ALK TIPU Cotton Research Institute Multan, Pakistan

DOI:

https://doi.org/10.54112/bcsrj.v2024i1.841

Keywords:

climate change, food security, crop improvement, sustainability, genetics

Abstract

This study evaluated several crop development techniques in addition to the effects of climate change on productivity in agriculture. Climate affects agricultural productivity and the distribution of crops worldwide. Given the current and projected variations in temperature, precipitation, and carbon dioxide concentrations, it is unclear whether agroecosystems will be able to produce enough food to meet the world's needs. Crop output, water productivity, and soil water balance are frequently altered by climate change. Soil moisture content and groundwater levels will be affected by the immediate effects of global warming-induced changes in temperature and precipitation patterns. Agricultural output is affected by several factors, such as crop variety, growing circumstances, soil deterioration, and water availability. Modern agricultural systems use genetics, biotechnology, plant breeding, environmental monitoring, and adjustments to management techniques to adapt to climate change. On the other hand, without a more thorough approach to agricultural systems, development cannot proceed. A strategy like this would mean growing amounts of a wider variety of superior crops and advancing equity, sustainability, nutrition, and food security in the future.

Downloads

Download data is not yet available.

References

abu Haraira, A., Ahmad, A., Khalid, M. N., Tariq, M., Nazir, S., & Habib, I. (2022). Enhancing health benefits of tomato by increasing its antioxidant contents through different techniques: A review. Advancements in Life Sciences 9, 131-142.

Ahad, B., & Reshi, Z. A. (2015). Climate change and plants. Crop production and global environmental issues, 553-574.

Ahloowalia, B., & Maluszynski, M. (2001). Induced mutations–A new paradigm in plant breeding. Euphytica 118, 167-173.

Alonso, E. B., Cockx, L., & Swinnen, J. (2018). Culture and food security. Global food security 17, 113-127.

Araus, J. L., & Cairns, J. E. (2014). Field high-throughput phenotyping: the new crop breeding frontier. Trends in plant science 19, 52-61.

Babar, M., Nawaz, M., Shahani, A., Khalid, M., Latif, A., Kanwal, K., Ijaz, M., Maqsood, Z., Amjad, I., & Khan, A. (2022). Genomic assisted crop breeding approaches for designing future crops to combat food production challenges. Biological and Clinical Sciences Research Journal 2022.

Bailey-Serres, J., Parker, J. E., Ainsworth, E. A., Oldroyd, G. E., & Schroeder, J. I. (2019). Genetic strategies for improving crop yields. Nature 575, 109-118.

Ben-Ari, G., & Lavi, U. (2012). Marker-assisted selection in plant breeding. In Plant biotechnology and agriculture (pp. 163-184). Elsevier.

Ben Mariem, S., Soba, D., Zhou, B., Loladze, I., Morales, F., & Aranjuelo, I. (2021). Climate change, crop yields, and grain quality of C3 cereals: A meta-analysis of [CO2], temperature, and drought effects. Plants 10, 1052.

Berry, E. M., Dernini, S., Burlingame, B., Meybeck, A., & Conforti, P. (2015). Food security and sustainability: can one exist without the other? Public health nutrition 18, 2293-2302.

Bhutta, M. A., Bibi, A., Ahmad, N. H., Kanwal, S., Amjad, Z., Farooq, U., Khalid, M. N., & Nayab, S. F. (2023). Molecular Mechanisms of Photoinhibition in Plants: A Review. Sarhad Journal of Agriculture 39.

Boopathi, N. M. (2013). Genetic mapping and marker assisted selection. Springer.

Boopathi, N. M., & Boopathi, N. M. (2020). Marker-assisted selection (MAS). Genetic mapping and marker assisted selection: Basics, practice and benefits, 343-388.

Brouder, S. M., & Volenec, J. J. (2008). Impact of climate change on crop nutrient and water use efficiencies. Physiologia Plantarum 133, 705-724.

Bruinsma, J. (2017). World agriculture: towards 2015/2030: an FAO study. Routledge.

Campbell, B. M., Vermeulen, S. J., Aggarwal, P. K., Corner-Dolloff, C., Girvetz, E., Loboguerrero, A. M., Ramirez-Villegas, J., Rosenstock, T., Sebastian, L., & Thornton, P. K. (2016). Reducing risks to food security from climate change. Global food security 11, 34-43.

Chakraborty, S., Tiedemann, A., & Teng, P. S. (2000). Climate change: potential impact on plant diseases. Environmental pollution 108, 317-326.

Cole, M. B., Augustin, M. A., Robertson, M. J., & Manners, J. M. (2018). The science of food security. npj Science of Food 2, 14.

DaMatta, F. M., Grandis, A., Arenque, B. C., & Buckeridge, M. S. (2010). Impacts of climate changes on crop physiology and food quality. Food Research International 43, 1814-1823.

Dawson, T. P., Perryman, A. H., & Osborne, T. M. (2016). Modelling impacts of climate change on global food security. Climatic change 134, 429-440.

Dixon, G. R. (2012). Climate change–impact on crop growth and food production, and plant pathogens. Canadian Journal of Plant Pathology 34, 362-379.

Dusenge, M. E., Duarte, A. G., & Way, D. A. (2019). Plant carbon metabolism and climate change: elevated CO 2 and temperature impacts on photosynthesis, photorespiration and respiration. New Phytologist 221, 32-49.

Ejeta, G., & Knoll, J. E. (2007). Marker-assisted selection in sorghum. In Genomics-assisted crop improvement: Vol 2: Genomics applications in crops (pp. 187-205). Springer.

Ericksen, P. J., Ingram, J. S., & Liverman, D. M. (2009). Food security and global environmental change: emerging challenges. In (Vol. 12, pp. 373-377): Elsevier.

Fischer, G. (2009). World food and agriculture to 2030/50. Technical paper from the Expert Meeting on How to Feed the World in,

Gautam, H., Bhardwaj, M., & Kumar, R. (2013). Climate change and its impact on plant diseases. Current Science, 1685-1691.

Gibson, M. (2012). Food security—a commentary: what is it and why is it so complicated? Foods 1, 18-27.

Gray, S. B., & Brady, S. M. (2016). Plant developmental responses to climate change. Developmental biology 419, 64-77.

Hamdan, M. F., Mohd Noor, S. N., Abd-Aziz, N., Pua, T.-L., & Tan, B. C. (2022). Green revolution to gene revolution: Technological advances in agriculture to feed the world. Plants 11, 1297.

Hasan, N., Choudhary, S., Naaz, N., Sharma, N., & Laskar, R. A. (2021). Recent advancements in molecular marker-assisted selection and applications in plant breeding programmes. Journal of Genetic Engineering and Biotechnology 19, 128.

Hatfield, J. L. (2013). Climate change: Challenges for future crop adjustments. Climate change and plant abiotic stress tolerance, 1-26.

Hatfield, J. L., Boote, K. J., Kimball, B. A., Ziska, L., Izaurralde, R. C., Ort, D., Thomson, A. M., & Wolfe, D. (2011). Climate impacts on agriculture: implications for crop production. Agronomy Journal 103, 351-370.

Hatfield, J. L., & Prueger, J. H. (2015). Temperature extremes: Effect on plant growth and development. Weather and climate extremes 10, 4-10.

Helms, M. (2004). Food sustainability, food security and the environment. British Food Journal 106, 380-387.

Ingram, J. (2011). A food systems approach to researching food security and its interactions with global environmental change. Food Security 3, 417-431.

Khalid, M. N., Abdullah, A., Ijaz, Z., Naheed, N., Hamad, A., Sheir, M. A., Shabir, F., Parveen, K., & Khan, M. D. (2021). Application and Potential Use of Advanced Bioinformatics Techniques in Agriculture and Animal Sciences. Ind. J. Pure App. Biosci 9, 237-246.

Khalid, M. N., Amjad, I., Hassan, A., Ajmal, U., Ammar, A., Rasheed, Z., & Qasim, M. (2021). Genetics of Inter Cropping for Crop Productivity Enhancement. Current Research in Agriculture and Farming.

Khalid, M. N., Tahir, M. H., Murtaza, A., Murad, M., Abdullah, A., Hundal, S. D., Zahid, M. K., & Saleem, F. (2021). Application and Potential Use of Advanced Biotechnology Techniques in Agriculture and Zoology. Ind. J. Pure App. Biosci 9, 284-296.

Korres, N. E., Norsworthy, J. K., Tehranchian, P., Gitsopoulos, T. K., Loka, D. A., Oosterhuis, D. M., Gealy, D. R., Moss, S. R., Burgos, N. R., & Miller, M. R. (2016). Cultivars to face climate change effects on crops and weeds: a review. Agronomy for sustainable Development 36, 1-22.

Liang, F., Deng, Q., Wang, Y., Xiong, Y., Jin, D., Li, J., & Wang, B. (2004). Molecular marker-assisted selection for yield-enhancing genes in the progeny of “9311× O. rufipogon” using SSR. Euphytica 139, 159-165.

Long, S. P., & Ort, D. R. (2010). More than taking the heat: crops and global change. Current opinion in plant biology 13, 240-247.

Luo, Q. (2011). Temperature thresholds and crop production: a review. Climatic change 109, 583-598.

Malhi, G. S., Kaur, M., & Kaushik, P. (2021). Impact of climate change on agriculture and its mitigation strategies: A review. Sustainability 13, 1318.

Mc Carthy, U., Uysal, I., Badia-Melis, R., Mercier, S., O'Donnell, C., & Ktenioudaki, A. (2018). Global food security–Issues, challenges and technological solutions. Trends in Food Science & Technology 77, 11-20.

McKenzie, F. C., & Williams, J. (2015). Sustainable food production: constraints, challenges and choices by 2050. Food Security 7, 221-233.

Misselhorn, A., Aggarwal, P., Ericksen, P., Gregory, P., Horn-Phathanothai, L., Ingram, J., & Wiebe, K. (2012). A vision for attaining food security. Current opinion in environmental sustainability 4, 7-17.

Nelson, G. C., Rosegrant, M., Palazzo, A., Gray, I., Ingersoll, C., Robertson, R., Tokgoz, S., Zhu, T., Sulser, T., & Ringler, C. (2010). Food Security. Farming, and Climate Change to 2050.

Premanandh, J. (2011). Factors affecting food security and contribution of modern technologies in food sustainability. Journal of the Science of Food and Agriculture 91, 2707-2714.

Prior, S. A., Runion, G. B., Marble, S. C., Rogers, H. H., Gilliam, C. H., & Torbert, H. A. (2011). A review of elevated atmospheric CO2 effects on plant growth and water relations: implications for horticulture. HortScience 46, 158-162.

Prosekov, A. Y., & Ivanova, S. A. (2018). Food security: The challenge of the present. Geoforum 91, 73-77.

Ragimekula, N., Varadarajula, N. N., Mallapuram, S. P., Gangimeni, G., Reddy, R. K., & Kondreddy, H. R. (2013). Marker assisted selection in disease resistance breeding. Journal of Plant Breeding and Genetics 1, 90-109.

Raza, A., Razzaq, A., Mehmood, S. S., Zou, X., Zhang, X., Lv, Y., & Xu, J. (2019). Impact of climate change on crops adaptation and strategies to tackle its outcome: A review. Plants 8, 34.

Rehman, M. U., Rather, G. H., Gull, Y., Mir, M. R., Mir, M. M., Waida, U. I., & Hakeem, K. R. (2015). Effect of climate change on horticultural crops. Crop production and global environmental issues, 211-239.

Rezaei, E. E., Webber, H., Asseng, S., Boote, K., Durand, J. L., Ewert, F., Martre, P., & MacCarthy, D. S. (2023). Climate change impacts on crop yields. Nature Reviews Earth & Environment 4, 831-846.

Sage, R. F., & Coleman, J. R. (2001). Effects of low atmospheric CO2 on plants: more than a thing of the past. Trends in plant science 6, 18-24.

Searchinger, T., Hanson, C., Ranganathan, J., Lipinski, B., Waite, R., Winterbottom, R., Dinshaw, A., Heimlich, R., Boval, M., & Chemineau, P. (2014). Creating a sustainable food future. A menu of solutions to sustainably feed more than 9 billion people by 2050. World resources report 2013-14: interim findings World Resources Institute (WRI); World Bank Groupe-Banque Mondiale; United …].

Sebastian, S., Streit, L., Stephens, P., Thompson, J., Hedges, B., Fabrizius, M., Soper, J., Schmidt, D., Kallem, R., & Hinds, M. (2010). Context‐specific marker‐assisted selection for improved grain yield in elite soybean populations. Crop Science 50, 1196-1206.

Shakoor, N., Lee, S., & Mockler, T. C. (2017). High throughput phenotyping to accelerate crop breeding and monitoring of diseases in the field. Current opinion in plant biology 38, 184-192.

Suprasanna, P., Mirajkar, S., & Bhagwat, S. (2015). Induced mutations and crop improvement. Plant Biology and Biotechnology: Volume I: Plant Diversity, Organization, Function and Improvement, 593-617.

Wang, J., Vanga, S. K., Saxena, R., Orsat, V., & Raghavan, V. (2018). Effect of climate change on the yield of cereal crops: A review. Climate 6, 41.

Xu, Y., & Crouch, J. H. (2008). Marker‐assisted selection in plant breeding: From publications to practice. Crop Science 48, 391-407.

Yang, W., Feng, H., Zhang, X., Zhang, J., Doonan, J. H., Batchelor, W. D., Xiong, L., & Yan, J. (2020). Crop phenomics and high-throughput phenotyping: past decades, current challenges, and future perspectives. Molecular plant 13, 187-214.

Downloads

Published

2024-05-16

How to Cite

AHMAD, A., AMIN, H., ZAINAB, U., JAVAID, T., IQBAL, R., KHALID, M., SHAMIM, F., KHAN, N., AHMAD, H., & TIPU, A. (2024). CROP IMPROVEMENT THROUGH DIFFERENT MEANS TO ADDRESS CLIMATE CHANGE AND FOOD SECURITY. Biological and Clinical Sciences Research Journal, 2024(1), 841. https://doi.org/10.54112/bcsrj.v2024i1.841

Most read articles by the same author(s)

1 2 3 > >>