TURMERIC'S ROLE AS A NATURAL ANTIBIOTIC AGAINST IMMUNOSUPPRESSIVE DISEASES IN POULTRY
DOI:
https://doi.org/10.54112/bcsrj.v2023i1.602Abstract
The poultry industry, a vital constituent of global food production, poses formidable threats from immunosuppressive illnesses that compromise poultry health, output, and economic sustainability. Due to various infectious and non-infectious agents, these immunosuppressive provisions significantly heighten birds' susceptibility to secondary infections and undermine the efficacy of vaccination. Poultry mortality and morbidity can be caused by non-infectious factors such as environmental stressors and nutritional deficiencies. The overuse of antibiotics in poultry production raises concerns about antibiotic resistance and public health, leading to the search for natural alternatives. Turmeric, scientifically known as Curcuma longa, has emerged as a promising solution due to its various attributes, including antimicrobial, antioxidant, anti-inflammatory, and immunomodulatory properties. It is poised to effectively supplant synthetic antibiotics in poultry, thus mitigating the risks to public health. This review paper investigates the role of turmeric as a natural antibiotic against immunosuppressive diseases in poultry. It comprehensively explores the multifaceted causes of immunosuppression in poultry, encompassing environmental stress, nutritional factors, and infectious agents. Furthermore, the article explores how turmeric can combat various issues and highlights its potent antimicrobial, anti-inflammatory, and antioxidant properties. Turmeric has been shown to enhance growth, boost immune function, and mitigate the adverse effects of stress, making it a valuable and sustainable solution for the poultry industry. By alleviating the risk of immunosuppression, turmeric safeguards avian health and augments the industry's overall success. This paper underscores the significance of embracing natural remedies like turmeric to uphold poultry health and well-being while diminishing reliance on synthetic antibiotics.
Downloads
References
Abbassi, H., Coudert, F., Dambrine, G., Chérel, Y., & Naciri, M. (2000). Effect of Cryptosporidium baileyi in specific pathogen-free chickens vaccinated (CVI988/Rispens) and challenged with HPRS-16 strain of Marek’s. Avian Pathology, 29(6), 623–634. https://doi.org/10.1080/03079450020016887
Abbassi, H., Dambrine, G., Chérel, Y., Coudert, F., & Naciri, M. (2000). Interaction of Marek’s disease virus and Cryptosporidium baileyi in experimentally infected chickens. Avian Diseases, 44(4), 776–789. https://doi.org/10.2307/1593049
Abd El-Hack, M. E., El-Saadony, M. T., Swelum, A. A., Arif, M., Abo Ghanima, M. M., Shukry, M., Noreldin, A., Taha, A. E., & El-Tarabily, K. A. (2021). Curcumin, the active substance of turmeric: its effects on health and ways to improve its bioavailability. Journal of the Science of Food and Agriculture, 101(14), 5747–5762. https://doi.org/10.1002/JSFA.11372
Abo-Al-Ela, H. G., El-Kassas, S., El-Naggar, K., Abdo, S. E., Jahejo, A. R., & Al Wakeel, R. A. (2021). Stress and immunity in poultry: light management and nanotechnology as effective immune enhancers to fight stress. Cell Stress and Chaperones 2021 26:3, 26(3), 457–472. https://doi.org/10.1007/S12192-021-01204-6
Aggarwal, B. B., & Harikumar, K. B. (2009). Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. The International Journal of Biochemistry & Cell Biology, 41(1), 40–59. https://doi.org/10.1016/J.BIOCEL.2008.06.010
Alcala, Y., Sumano, H., & Gutierrez, L. (2023). Efficacy of a Pharmaceutically Alginate-Coated Phytoremedy (Black Garlic and Turmeric) for the Control of Natural Coccidia Infestation in Turkeys. https://doi.org/10.20944/PREPRINTS202308.0934.V1
Alkateb, A. I., & Gerish, E. K. (2019). Chicken Infectious Anaemia Virus: A Mini-Review. Journal of Pure & Applied Sciences , 18(3). https://doi.org/10.51984/JOPAS.V18I3.222
Al-Sultan, S. I. (2003). The Effect of Curcuma longa (Tumeric) on Overall Performance of Broiler Chickens. International Journal of Poultry Science, 2(5), 351–353.
Anusha, M. B., Shivanna, N., Kumar, G. P., & Anilakumar, K. R. (2018). Efficiency of selected food ingredients on protein efficiency ratio, glycemic index and in vitro digestive properties. Journal of Food Science and Technology, 55(5), 1913–1921. https://doi.org/10.1007/S13197-018-3109-Y/TABLES/5
Azeez, T. B., & Lunghar, J. (2021). Antiinflammatory effects of turmeric (Curcuma longa) and ginger (Zingiber officinale). Inflammation and Natural Products, 83–102. https://doi.org/10.1016/B978-0-12-819218-4.00011-0
Barzegar, A., & Moosavi-Movahedi, A. A. (2011). Intracellular ROS Protection Efficiency and Free Radical-Scavenging Activity of Curcumin. PLOS ONE, 6(10), e26012. https://doi.org/10.1371/JOURNAL.PONE.0026012
Bondy, G. S., & Pestka, J. J. (2000a). IMMUNOMODULATION BY FUNGAL TOXINS. Journal of Toxicology and Environmental Health Part B: Critical Reviews, 3(2), 109–143. https://doi.org/10.1080/109374000281113
Bondy, G. S., & Pestka, J. J. (2000b). IMMUNOMODULATION BY FUNGAL TOXINS. Journal of Toxicology and Environmental Health Part B: Critical Reviews, 3(2), 109–143. https://doi.org/10.1080/109374000281113
Boroumand, N., Samarghandian, S., & Hashemy, S. I. (2018). Immunomodulatory, anti-inflammatory, and antioxidant effects of curcumin. Journal of Herbmed Pharmacology, 7(4), 211–219. https://doi.org/10.15171/JHP.2018.33
Casewell, M., Friis, C., Marco, E., McMullin, P., & Phillips, I. (2003). The European ban on growth-promoting antibiotics and emerging consequences for human and animal health. Journal of Antimicrobial Chemotherapy, 52(2), 159–161. https://doi.org/10.1093/JAC/DKG313
Cheng, Y. H., Ding, S. T., & Chang, M. H. (2006a). Effect of fumonisins on macrophage immune functions and gene expression of cytokines in broilers. Archives of Animal Nutrition, 60(4), 267–276. https://doi.org/10.1080/17450390600785079
Cheng, Y. H., Ding, S. T., & Chang, M. H. (2006b). Effect of fumonisins on macrophage immune functions and gene expression of cytokines in broilers. Archives of Animal Nutrition, 60(4), 267–276. https://doi.org/10.1080/17450390600785079
Cross, C., Davies, M., Bateman, E., Crame, E., Joyce, P., Wignall, A., Ariaee, A., Gladman, M., Wardill, H., & Bowen, J. (2024). Fibre-rich diet attenuates chemotherapy-related neuroinflammation in mice. Brain, Behavior, and Immunity, 115, 13–25. https://doi.org/10.1016/j.bbi.2023.09.018
Damiano, S., Jarriyawattanachaikul, W., Girolami, F., Longobardi, C., Nebbia, C., Andretta, E., Lauritano, C., Dabbou, S., Avantaggiato, G., Schiavone, A., Badino, P., & Ciarcia, R. (2022). Curcumin Supplementation Protects Broiler Chickens Against the Renal Oxidative Stress Induced by the Dietary Exposure to Low Levels of Aflatoxin B1. Frontiers in Veterinary Science, 8, 822227. https://doi.org/10.3389/FVETS.2021.822227/BIBTEX
Dibner, J. J., Knight, C. D., Kitchell, M. L., Atwell, C. A., Downs, A. C., & Ivey, F. J. (1998). Early Feeding and Development of the Immune System in Neonatal Poultry. Journal of Applied Poultry Research, 7(4), 425–436. https://doi.org/10.1093/JAPR/7.4.425
E. Wright, L., B. Frye, J., Gorti, B., N. Timmermann, B., & L. Funk, J. (n.d.). Bioactivity of Turmeric-derived Curcuminoids and Related Metabolites in Breast Cancer.
Ekine, O. A., Udoudo, E. F., & George, O. S. (2020). Influence of turmeric (curcuma longa) as feed additive on the performance, serum enzymes and lipid profile of broiler chickens. Nigerian Journal of Animal Science, 22(2), 57–63. https://www.ajol.info/index.php/tjas/article/view/200510
Eleiwa, N. Z., El-Shabrawi, A. A., Ibrahim, D., Abdelwarith, A. A., Younis, E. M., Davies, S. J., Metwally, M. M. M., & Abu-Zeid, E. H. (2023). Dietary Curcumin Modulating Effect on Performance, Antioxidant Status, and Immune-Related Response of Broiler Chickens Exposed to Imidacloprid Insecticide. Animals 2023, Vol. 13, Page 3650, 13(23), 3650. https://doi.org/10.3390/ANI13233650
Fellah, J. S., Jaffredo, T., Nagy, N., & Dunon, D. (2014). Development of the Avian Immune System. Avian Immunology: Second Edition, 45–63. https://doi.org/10.1016/B978-0-12-396965-1.00003-0
Ferri, M., Ranucci, E., Romagnoli, P., & Giaccone, V. (2017). Antimicrobial resistance: A global emerging threat to public health systems. Critical Reviews in Food Science and Nutrition, 57(13), 2857–2876. https://doi.org/10.1080/10408398.2015.1077192
Ge, E. J., Bush, A. I., Casini, A., Cobine, P. A., Cross, J. R., DeNicola, G. M., Dou, Q. P., Franz, K. J., Gohil, V. M., Gupta, S., Kaler, S. G., Lutsenko, S., Mittal, V., Petris, M. J., Polishchuk, R., Ralle, M., Schilsky, M. L., Tonks, N. K., Vahdat, L. T., … Chang, C. J. (2021). Connecting copper and cancer: from transition metal signalling to metalloplasia. Nature Reviews Cancer 2021 22:2, 22(2), 102–113. https://doi.org/10.1038/s41568-021-00417-2
Gimeno, I. M., & Schat, K. A. (2018). Virus-Induced Immunosuppression in Chickens. Avian Diseases, 62(3), 272–285. https://doi.org/10.1637/11841-041318-REVIEW.1
Hafez, H. M., & Attia, Y. A. (2020). Challenges to the Poultry Industry: Current Perspectives and Strategic Future After the COVID-19 Outbreak. Frontiers in Veterinary Science, 7, 558359. https://doi.org/10.3389/FVETS.2020.00516/BIBTEX
Hanson, M. A., & Gluckman, P. D. (2014). Early developmental conditioning of later health and disease: physiology or pathophysiology? Physiological Reviews, 94(4), 1027–1076. https://doi.org/10.1152/PHYSREV.00029.2013/ASSET/IMAGES/LARGE/Z9J0041427020011.JPEG
Hassan, Z. U., Zargham Khan, M., Khan, A., Javed, I., Sadique, U., & Khatoon, A. (n.d.). Pakistan Veterinary Journal Ochratoxicosis in White Leghorn breeder hens: Production and breeding performance. Retrieved November 19, 2023, from www.pvj.com.pk
Haussmann, M. F., Longenecker, A. S., Marchetto, N. M., Juliano, S. A., & Bowden, R. M. (2012). Embryonic exposure to corticosterone modifies the juvenile stress response, oxidative stress and telomere length. Proceedings of the Royal Society B: Biological Sciences, 279(1732), 1447–1456. https://doi.org/10.1098/RSPB.2011.1913
Henriksen, R., Groothuis, T. G., & Rettenbacher, S. (2011). Elevated Plasma Corticosterone Decreases Yolk Testosterone and Progesterone in Chickens: Linking Maternal Stress and Hormone-Mediated Maternal Effects. PLOS ONE, 6(8), e23824. https://doi.org/10.1371/JOURNAL.PONE.0023824
Jenkins, K. A., Bean, A. G. D., & Lowenthal, J. W. (2007). Avian genomics and the innate immune response to viruses. Cytogenetic and Genome Research, 117(1–4), 207–212. https://doi.org/10.1159/000103181
Johannah, N. M., Joseph, A., Maliakel, B., & Krishnakumar, I. M. (2018). Dietary addition of a standardized extract of turmeric (TurmaFEED TM ) improves growth performance and carcass quality of broilers. Journal of Animal Science and Technology, 60(1), 1–9. https://doi.org/10.1186/S40781-018-0167-7/FIGURES/6
Khodadadi, M., Sheikhi, N., Haghbin Nazarpak, H., & Nikbakht Brujeni, G. (2021). Effects of dietary turmeric (Curcuma longa) on innate and acquired immune responses in broiler chicken. Veterinary and Animal Science, 14, 100213. https://doi.org/10.1016/J.VAS.2021.100213
Kichu, M., . N., Zuyie, R., Rutsa, M. C., Savino, N., & Singh, R. (2023). Influence of Turmeric Based Diet on the Performance of Broiler Chicken. Asian Journal of Animal Sciences, 17(1), 21–30. https://doi.org/10.3923/AJAS.2023.21.30
Kunnumakkara, A. B., Bordoloi, D., Padmavathi, G., Monisha, J., Roy, N. K., Prasad, S., & Aggarwal, B. B. (2017). Curcumin, the golden nutraceutical: multitargeting for multiple chronic diseases. British Journal of Pharmacology, 174(11), 1325–1348. https://doi.org/10.1111/BPH.13621
Lee, M. T., Lin, W. C., Yu, B., & Lee, T. T. (2017). Antioxidant capacity of phytochemicals and their potential effects on oxidative status in animals — A review. Asian-Australasian Journal of Animal Sciences, 30(3), 299. https://doi.org/10.5713/AJAS.16.0438
Lillehoj, H. S., & Trout, J. M. (1996). Avian gut-associated lymphoid tissues and intestinal immune responses to Eimeria parasites. Clinical Microbiology Reviews, 9(3), 349–360. https://doi.org/10.1128/CMR.9.3.349
Liu, M., & Vakharia, V. N. (2006). Nonstructural Protein of Infectious Bursal Disease Virus Inhibits Apoptosis at the Early Stage of Virus Infection. Journal of Virology, 80(7), 3369–3377. https://doi.org/10.1128/JVI.80.7.3369-3377.2006/ASSET/76DBB4DA-6F2D-4CFA-9DAD-58CA5E19C5C3/ASSETS/GRAPHIC/ZJV0070675490006.JPEG
Mahgoub, H. A. (2012). An overview of infectious bursal disease. Archives of Virology, 157(11), 2047–2057. https://doi.org/10.1007/S00705-012-1377-9/FIGURES/4
Masuda, T., Maekawa, T., Hidaka, K., Bando, H., Takeda, Y., & Yamaguchi, H. (2001). Chemical studies on antioxidant mechanism of curcumin: Analysis of oxidative coupling products from curcumin and linoleate. Journal of Agricultural and Food Chemistry, 49(5), 2539–2547. https://doi.org/10.1021/JF001442X/SUPPL_FILE/JF001442X_S.PDF
Matta, B., Song, S., Li, D., & Barnes, B. J. (2017). Interferon regulatory factor signaling in autoimmune disease. Cytokine, 98, 15–26. https://doi.org/10.1016/J.CYTO.2017.02.006
McDougald, L. R., Cervantes, H. M., Jenkins, M. C., Hess, M., & Beckstead, R. (2019). Protozoal Infections. Diseases of Poultry, 1192–1254. https://doi.org/10.1002/9781119371199.CH28
Mohammadi, A., Blesso, C. N., Barreto, G. E., Banach, M., Majeed, M., & Sahebkar, A. (2019). Macrophage plasticity, polarization and function in response to curcumin, a diet-derived polyphenol, as an immunomodulatory agent. The Journal of Nutritional Biochemistry, 66, 1–16. https://doi.org/10.1016/J.JNUTBIO.2018.12.005
Mondal, M., Yeasmin, T., Karim, R., Siddiqui, M. N., Nabi, S. R., Sayed, M., & Siddiky, M. (2015). Effect of dietary supplementation of turmeric (Curcuma longa) powder on the growth performance and carcass traits of broiler chicks. SAARC Journal of Agriculture, 13(1), 188–199. https://doi.org/10.3329/SJA.V13I1.24191
Munir, M. T., Rehman, Z. U., Shah, M. A., & Umar, S. (2017). Interactions of Aspergillus fumigatus with the respiratory system in poultry. World’s Poultry Science Journal, 73(2), 321–336. https://doi.org/10.1017/S0043933917000022
Nakamura, S., Ochiai, K., Ochi, A., Yabushita, H., Abe, A., Kishi, S., Sunden, Y., & Umemura, T. (2014). Cardiac Pathology and Molecular Epidemiology by Avian Leukosis Viruses in Japan. PLOS ONE, 9(1), e86546. https://doi.org/10.1371/JOURNAL.PONE.0086546
Nawab, A., Ibtisham, F., Li, G., Kieser, B., Wu, J., Liu, W., Zhao, Y., Nawab, Y., Li, K., Xiao, M., & An, L. (2018). Heat stress in poultry production: Mitigation strategies to overcome the future challenges facing the global poultry industry. Journal of Thermal Biology, 78, 131–139. https://doi.org/10.1016/J.JTHERBIO.2018.08.010
Payne, L. N., & Nair, V. (2012). The long view: 40 years of avian leukosis research. Avian Pathology, 41(1), 11–19. https://doi.org/10.1080/03079457.2011.646237
Pestka, J. J., Zhou, H. R., Moon, Y., & Chung, Y. J. (2004a). Cellular and molecular mechanisms for immune modulation by deoxynivalenol and other trichothecenes: unraveling a paradox. Toxicology Letters, 153(1), 61–73. https://doi.org/10.1016/J.TOXLET.2004.04.023
Pestka, J. J., Zhou, H. R., Moon, Y., & Chung, Y. J. (2004b). Cellular and molecular mechanisms for immune modulation by deoxynivalenol and other trichothecenes: unraveling a paradox. Toxicology Letters, 153(1), 61–73. https://doi.org/10.1016/J.TOXLET.2004.04.023
Publications Manager, R. (2000). Chicken Meat and Egg Programs.
Qasem, M., Alhajj, M. S., Nabi, R., & Al-Mufarrej, S. (2015). Effect of Turmeric Powder as a Dietary Supplement on Performance Indicators and Immune Responses in Broiler Chickens. Article in Journal of Animal and Veterinary Advances. https://doi.org/10.3923/javaa.2015.30.35
Qureshi, M. A., Brake, J., Hamilton, P. B., Hagler, W. M., & Nesheim, S. (1998a). Dietary exposure of broiler breeders to aflatoxin results in immune dysfunction in progeny chicks. Poultry Science, 77(6), 812–819. https://doi.org/10.1093/PS/77.6.812
Qureshi, M. A., Brake, J., Hamilton, P. B., Hagler, W. M., & Nesheim, S. (1998b). Dietary exposure of broiler breeders to aflatoxin results in immune dysfunction in progeny chicks. Poultry Science, 77(6), 812–819. https://doi.org/10.1093/PS/77.6.812
Ramzy, N. M., Mohamed, F. H., Ibrahim, H. N., Badawy, A. M., & Fawzy, M. (2023). Clinico-pathological and Immunological Changes in Chickens Infected with Chicken Anemia Virus. Journal of Advanced Veterinary Research, 13(3), 449–454. https://advetresearch.com/index.php/AVR/article/view/1231
Ratnani, I. J., Vala, A. U., Panchal, B. N., Tiwari, D. S., Karambelkar, S. S., Sojitra, M. G., & Nagori, N. N. (2017). Association of social anxiety disorder with depression and quality of life among medical undergraduate students. Journal of Family Medicine and Primary Care, 6(2), 243. https://doi.org/10.4103/2249-4863.219992
Rezar, V., Frankič, T., Narat, M., Levart, A., & Salobir, J. (2007a). Dose-Dependent Effects of T-2 Toxin on Performance, Lipid Peroxidation, and Genotoxicity in Broiler Chickens. Poultry Science, 86(6), 1155–1160. https://doi.org/10.1093/PS/86.6.1155
Rezar, V., Frankič, T., Narat, M., Levart, A., & Salobir, J. (2007b). Dose-Dependent Effects of T-2 Toxin on Performance, Lipid Peroxidation, and Genotoxicity in Broiler Chickens. Poultry Science, 86(6), 1155–1160. https://doi.org/10.1093/PS/86.6.1155
Rhee, J. K., Yang, H. J., Yook, S. Y., & Kim, H. C. (1998). Immunosuppressive effect of Cryptosporidium baileyi infection on vaccination against avian infectious bronchitis in chicks. The Korean Journal of Parasitology, 36(3), 203. https://doi.org/10.3347/KJP.1998.36.3.203
Rodenberg, J., Sharma, J. M., Belzer, S. W., Nordgren, R. M., & Naqi, S. (1994). Flow cytometric analysis of B cell and T cell subpopulations in specific-pathogen-free chickens infected with infectious bursal disease virus. Avian Diseases, 38(1), 16–21. https://doi.org/10.2307/1591831
Rodríguez-Lecompte, J. C., Niño-Fong, R., Lopez, A., Frederick Markham, R. J., & Kibenge, F. S. B. (2005). Infectious bursal disease virus (IBDV) induces apoptosis in chicken B cells. Comparative Immunology, Microbiology and Infectious Diseases, 28(4), 321–337. https://doi.org/10.1016/J.CIMID.2005.08.004
Ruan, D., Zhu, Y. W., Fouad, A. M., Yan, S. J., Chen, W., Zhang, Y. N., Xia, W. G., Wang, S., Jiang, S. Q., Yang, L., & Zheng, C. T. (2019). Dietary curcumin enhances intestinal antioxidant capacity in ducklings via altering gene expression of antioxidant and key detoxification enzymes. Poultry Science, 98(9), 3705–3714. https://doi.org/10.3382/PS/PEZ058
Schat, K. A., & Skinner, M. A. (2022). Avian immunosuppressive diseases and immune evasion. Avian Immunology, 387–417. https://doi.org/10.1016/B978-0-12-818708-1.00018-X
Schat, K. A., & Van Santen, V. L. (2019). Chicken Infectious Anemia and Circovirus Infections in Commercial Flocks. Diseases of Poultry, 284–320. https://doi.org/10.1002/9781119371199.CH8
Shende, K., Dhuria, R. K., Meel, M., Nagar, M. K., & Jediya, H. K. (2021). Effect of Turmeric (Curcuma longa) Powder and Synbiotic as Alternative to Antibiotic Growth Promoter on Haemato-biochemical Parameters, Comparative Economics and Mortality of Broiler Chicks. International Journal of Bio-Resource and Stress Management, 12(2), 125–130. https://doi.org/10.23910/1.2021.2182
Shi, S. (n.d.). Assessment of Turmeric (Curcuma longa L.) Varieties for Yield and Curcumin Content.
Shini, S., & Kaiser, P. (2009). Effects of stress, mimicked by administration of corticosterone in drinking water, on the expression of chicken cytokine and chemokine genes in lymphocytes. Stress, 12(5), 388–399. https://doi.org/10.1080/10253890802526894
Surai, P. F., Kochish, I. I., Fisinin, V. I., & Kidd, M. T. (2019). Antioxidant Defence Systems and Oxidative Stress in Poultry Biology: An Update. Antioxidants 2019, Vol. 8, Page 235, 8(7), 235. https://doi.org/10.3390/ANTIOX8070235
Tessari, E. N. C., Oliveira, C. A. F., Cardoso, A. L. S. P., Ledoux, D. R., & Rottinghaus, G. E. (2006). Effects of aflatoxin B1 and fumonisin B1 on body weight, antibody titres and histology of broiler chicks. British Poultry Science, 47(3), 357–364. https://doi.org/10.1080/00071660600756071
Tuong, D. T. C., Moniruzzaman, M., Smirnova, E., Chin, S., Sureshbabu, A., Karthikeyan, A., & Min, T. (2023). Curcumin as a Potential Antioxidant in Stress Regulation of Terrestrial, Avian, and Aquatic Animals: A Review. Antioxidants 2023, Vol. 12, Page 1700, 12(9), 1700. https://doi.org/10.3390/ANTIOX12091700
Tyagi, P., Singh, M., Kumari, H., Kumari, A., & Mukhopadhyay, K. (2015). Bactericidal Activity of Curcumin I Is Associated with Damaging of Bacterial Membrane. PLOS ONE, 10(3), e0121313. https://doi.org/10.1371/JOURNAL.PONE.0121313
Vairagar, P. R., Sarkate, A. P., Nirmal, N. P., & Sakhale, B. K. (2023). New perspectives and role of phytochemicals in biofilm inhibition. Recent Frontiers of Phytochemicals: Applications in Food, Pharmacy, Cosmetics, and Biotechnology, 413–431. https://doi.org/10.1016/B978-0-443-19143-5.00012-8
Wei, L., Hou, L., Zhu, S., Wang, J., Zhou, J., & Liu, J. (2011). Infectious bursal disease virus activates the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway by interaction of VP5 protein with the p85α subunit of PI3K. Virology, 417(1), 211–220. https://doi.org/10.1016/J.VIROL.2011.03.003
Yahfoufi, N., Alsadi, N., Jambi, M., & Matar, C. (2018). The Immunomodulatory and Anti-Inflammatory Role of Polyphenols. Nutrients 2018, Vol. 10, Page 1618, 10(11), 1618. https://doi.org/10.3390/NU10111618
Yao, K., & Vakharia, V. N. (2001). Induction of Apoptosis in Vitro by the 17-kDa Nonstructural Protein of Infectious Bursal Disease Virus: Possible Role in Viral Pathogenesis. Virology, 285(1), 50–58. https://doi.org/10.1006/VIRO.2001.0947
Yunus, A. W., Razzazi-Fazeli, E., & Bohm, J. (2011a). Aflatoxin B1 in Affecting Broiler’s Performance, Immunity, and Gastrointestinal Tract: A Review of History and Contemporary Issues. Toxins 2011, Vol. 3, Pages 566-590, 3(6), 566–590. https://doi.org/10.3390/TOXINS3060566
Yunus, A. W., Razzazi-Fazeli, E., & Bohm, J. (2011b). Aflatoxin B1 in Affecting Broiler’s Performance, Immunity, and Gastrointestinal Tract: A Review of History and Contemporary Issues. Toxins 2011, Vol. 3, Pages 566-590, 3(6), 566–590. https://doi.org/10.3390/TOXINS3060566
Zheng, D., Huang, C., Huang, H., Zhao, Y., Khan, M. R. U., Zhao, H., & Huang, L. (2020). Antibacterial Mechanism of Curcumin: A Review. Chemistry & Biodiversity, 17(8), e2000171. https://doi.org/10.1002/CBDV.202000171
Zorofchian Moghadamtousi, S., Abdul Kadir, H., Hassandarvish, P., Tajik, H., Abubakar, S., & Zandi, K. (2014). A review on antibacterial, antiviral, and antifungal activity of curcumin. BioMed Research International, 2014. https://doi.org/10.1155/2014/186864
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 M RIZWAN , H IRSHAD, T JAMIL, SB TAHIR , A FARAZ , MT BABAR, QB DIN , H SOOMRO
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.