AN ANALYSIS OF PAKISTAN’S CLIMATIC FACTORS AFFECTING MARINE FISH PRODUCTION

Authors

  • SM SHAHZAD Vice-Chancellor, Minhaj University Lahore, Pakistan

DOI:

https://doi.org/10.54112/bcsrj.v2023i1.590

Keywords:

Marine Fish Production, Rainfall, Temperature, CO2, ARDL model

Abstract

A lot of study has been done on how climate change impacts farming. But there aren't many studies in Pakistan that look at how climate change changes the number of fish that can be caught in the real world. This study's main goal is to look at the effects of climate change on fish in the sea around Pakistan from 1990 to 2020. It was given to us by the World Development Indicators. This study used the autoregressive distributed lag (ARDL) model to examine how the link between CO2 emissions, weather, rainfall, and sea fish production changes over time. Using the autoregressive distributed lag (ARDL) method to cointegration, a strong link was found between rains and the number of fish caught. To determine if rainfall has a statistically significant effect on sea fish production in the short term, we used the coefficient for rainfall (β = 5738.02) and found that it does. In the long run, it makes a difference at the 1% level of importance. Both changes in temperature and CO2 pollution hurt fish production a lot, according to the study. This is true in the short as well as in the long term. Researchers found that it would be helpful for lawmakers to make national policies that are better for adapting to climate change and supporting long-term control of marine fishing. Pakistan's fishing business should do a lot of research and development to find marine fish species that can live in places with a lot of CO2 and high temperatures.

Downloads

Download data is not yet available.

References

Abbas, S. (2020). Climate change and cotton production: An empirical investigation of Pakistan. Environmental Science and Pollution Research International, 27(23), 29580–29588. https://doi.org/10.1007/s11356-020-09222-0

Adom, P. K., Bekoe, W., & Akoena, S. K. K. (2012). Modelling aggregate domestic electricity demand in Ghana: An autoregressive distributed lag bounds cointegration approach. Energy Policy, 42, 530–537. https://doi.org/10.1016/j.enpol.2011.12.019

Alexander, L. V., Zhang, X., Peterson, T. C., Caesar, J., Gleason, B., Klein Tank, A. M. G., Haylock, M., Collins, D., Trewin, B., Rahimzadeh, F., Tagipour, A., Rupa Kumar, K., Revadekar, J., Griffiths, G., Vincent, L., Stephenson, D. B., Burn, J., Aguilar, E., Brunet, M., … Vazquez-Aguirre, J. L. (2006). Global observed changes in daily climate extremes of temperature and precipitation. Journal of Geophysical Research: Atmospheres, 111(D5), Article D5. https://doi.org/10.1029/2005JD006290

Alnafissa, M., Kotb, A., Alamri, Y., Alagsam, F., & Alhashim, J. (2021). The impact of climatic and environmental changes on the sustainable yield of the Saudi’s capture fisheries. Journal of King Saud University - Science, 33(5), Article 5. https://doi.org/10.1016/j.jksus.2021.101458

Asumadu-Sarkodie, S., & Owusu, P. A. (2016). The relationship between carbon dioxide and agriculture in Ghana: A comparison of VECM and ARDL model. Environmental Science and Pollution Research, 23(11), 10968–10982. https://doi.org/10.1007/s11356-016-6252-x

Bakun, A., & Weeks, S. J. (2004). Greenhouse gas buildup, sardines, submarine eruptions and the possibility of abrupt degradation of intense marine upwelling ecosystems. Ecology Letters, 7(11), Article 11. https://doi.org/10.1111/j.1461-0248.2004.00665.x

Barange, M., Bahri, T., Beveridge, M., Cochrane, K., Funge-Smith, S., & Poulain, F. (2018). Impacts of Climate Change on Fisheries and Aquaculture. Synthesis of Current Knowledge, Adaptation, and Mitigation Options.

Begum, M., Masud, M. M., Alam, L., Mokhtar, M. B., & Amir, A. A. (2022). The impact of climate variables on marine fish production: An empirical evidence from Bangladesh based on autoregressive distributed lag (ARDL) approach. Environmental Science and Pollution Research, 29(58), 87923–87937. https://doi.org/10.1007/s11356-022-21845-z

Brierley, A. S., & Kingsford, M. J. (2009). Impacts of Climate Change on Marine Organisms and Ecosystems. Current Biology, 19(14), R602–R614. https://doi.org/10.1016/j.cub.2009.05.046

Caesar, J., Janes, T., Lindsay, A., & Bhaskaran, B. (2015). Temperature and precipitation projections over Bangladesh and the upstream Ganges, Brahmaputra and Meghna systems. Environmental Science: Processes & Impacts, 17(6), Article 6. https://doi.org/10.1039/C4EM00650J

Caporale, G. M., & Pittis, N. (2004). Robustness of the CUSUM and CUSUM-of-Squares Tests to Serial Correlation, Endogeneity and Lack of Structural Invariance. Some Monte Carlo Evidence. In Economics Series (157; Economics Series). Institute for Advanced Studies. https://ideas.repec.org/p/ihs/ihsesp/157.html

Chandio, A. A., Jiang, Y., Rehman, A., & Rauf, A. (2020). Short and long-run impacts of climate change on agriculture: An empirical evidence from China. International Journal of Climate Change Strategies and Management, 12(2), Article 2. https://doi.org/10.1108/IJCCSM-05-2019-0026

CHANDIO, A. A., MAGSI, H., & OZTURK, I. (2020). Examining the effects of climate change on rice production: Case study of Pakistan. Environmental Science and Pollution Research, 27(8), Article 8. https://doi.org/10.1007/s11356-019-07486-9

Chandio, A. A., Ozturk, I., Akram, W., Ahmad, F., & Mirani, A. A. (2020). Empirical analysis of climate change factors affecting cereal yield: Evidence from Turkey. Environmental Science and Pollution Research, 27(11), Article 11. https://doi.org/10.1007/s11356-020-07739-y

Cheung, W. W. L., Lam, V. W. Y., Sarmiento, J. L., Kearney, K., Watson, R., & Pauly, D. (2009). Projecting global marine biodiversity impacts under climate change scenarios. Fish and Fisheries, 10(3), Article 3. https://doi.org/10.1111/j.1467-2979.2008.00315.x

Cheung, W. W., Sarmiento, J. L., Dunne, J., Frölicher, T. L., Lam, V. W., Deng Palomares, M. L., Watson, R., & Pauly, D. (2013). Shrinking of fishes exacerbates impacts of global ocean changes on marine ecosystems. Nature Climate Change, 3(3), 254–258.

Clarke, T. M., Reygondeau, G., Wabnitz, C., Robertson, R., Ixquiac-Cabrera, M., López, M., Ramírez Coghi, A. R., del Río Iglesias, J. L., Wehrtmann, I., & Cheung, W. W. L. (2021). Climate change impacts on living marine resources in the Eastern Tropical Pacific. Diversity and Distributions, 27(1), Article 1. https://doi.org/10.1111/ddi.13181

Danylchuk, A. J., Griffin, L. P., Ahrens, R., Allen, M. S., Boucek, R. E., Brownscombe, J. W., Casselberry, G. A., Danylchuk, S. C., Filous, A., Goldberg, T. L., Perez, A. U., Rehage, J. S., Santos, R. O., Shenker, J., Wilson, J. K., Adams, A. J., & Cooke, S. J. (2023). Cascading effects of climate change on recreational marine flats fishes and fisheries. Environmental Biology of Fishes, 106(2), 381–416. https://doi.org/10.1007/s10641-022-01333-6

Dickey, D. A., & Fuller, W. A. (1979). Distribution of the Estimators for Autoregressive Time Series With a Unit Root. Journal of the American Statistical Association, 74(366), 427. https://doi.org/10.2307/2286348

Doney, S. C., Fabry, V. J., Feely, R. A., & Kleypas, J. A. (2009). Ocean Acidification: The Other CO2 Problem. Annual Review of Marine Science, 1(1), Article 1. https://doi.org/10.1146/annurev.marine.010908.163834

Engle, R. F., & Granger, C. W. J. (1987). Co-Integration and Error Correction: Representation, Estimation, and Testing. Econometrica, 55(2), 251–276. https://doi.org/10.2307/1913236

Fernandes, J. A., Kay, S., Hossain, M. A. R., Ahmed, M., Cheung, W. W. L., Lazar, A. N., & Barange, M. (2016). Projecting marine fish production and catch potential in Bangladesh in the 21st century under long-term environmental change and management scenarios. ICES Journal of Marine Science, 73(5), 1357–1369. https://doi.org/10.1093/icesjms/fsv217

Fernandes, J., Rutterford, L., Simpson, S., Butenschön, M., Frölicher, T., Yool, A., Cheung, W., & Grant, A. (2020). Can we project changes in fish abundance and distribution in response to climate? Global Change Biology, 26. https://doi.org/10.1111/gcb.15081

Frommel, A. Y., Maneja, R., Lowe, D., Pascoe, C. K., Geffen, A. J., Folkvord, A., Piatkowski, U., & Clemmesen, C. (2014). Organ damage in Atlantic herring larvae as a result of ocean acidification. Ecological Applications: A Publication of the Ecological Society of America, 24(5), 1131–1143. https://doi.org/10.1890/13-0297.1

Gamito, R., Teixeira, C. M., Costa, M. J., & Cabral, H. N. (2013). Climate-induced changes in fish landings of different fleet components of Portuguese fisheries. Regional Environmental Change, 13(2), Article 2. https://doi.org/10.1007/s10113-012-0358-6

Hanifa, M. T., Yongtong, M., Shaha, S. H., Pavaseb, T. R., & Kalhoroa, M. T. (2022). Economics of open-access fisheries: A case of factors affecting the revenue of coastal or inshore longline fisheries in Pakistan. Indian Journal of Geo-Marine Sciences (IJMS), 50(01), Article 01. https://doi.org/10.56042/ijms.v50i01.66063

Ho, C.-H., Lu, H.-J., He, J.-S., Lan, K.-W., & Chen, J.-L. (2016). Changes in Patterns of Seasonality Shown by Migratory Fish under Global Warming: Evidence from Catch Data of Taiwan’s Coastal Fisheries. Sustainability, 8(3), Article 3. https://doi.org/10.3390/su8030273

Hossain, M. S., Qian, L., Arshad, M., Shahid, S., Fahad, S., & Akhter, J. (2018). Climate change and crop farming in Bangladesh: An analysis of economic impacts. International Journal of Climate Change Strategies and Management, 11(3), Article 3. https://doi.org/10.1108/IJCCSM-04-2018-0030

Hossain, M. S., Sarker, S., Sharifuzzaman, S. M., & Chowdhury, S. R. (2020). Primary productivity connects hilsa fishery in the Bay of Bengal. Scientific Reports, 10(1), Article 1. https://doi.org/10.1038/s41598-020-62616-5

Jafar-Sidik, M., Aung, T., & Singh, A. (2010). Sensitivity of Fish Landings to Some Meteorological Parameters: A Case Study. American Journal of Environmental Sciences, 6(2), Article 2. https://doi.org/10.3844/ajessp.2010.177.183

Johansen, S. (1988). Statistical analysis of cointegration vectors. Journal of Economic Dynamics and Control, 12(2), 231–254. https://doi.org/10.1016/0165-1889(88)90041-3

Kaliyadan, F., & Kulkarni, V. (2019). Types of Variables, Descriptive Statistics, and Sample Size. Indian Dermatology Online Journal, 10(1), 82–86. https://doi.org/10.4103/idoj.IDOJ_468_18

Kim, J., & Choi, I. (2017). Unit Roots in Economic and Financial Time Series: A Re-Evaluation at the Decision-Based Significance Levels. Econometrics, 5(3), 41. https://doi.org/10.3390/econometrics5030041

Klein, N. (2011). Maritime Security and the Law of the Sea. OUP Oxford.

Lam, V., Cheung, W., Swartz, W., & Sumaila, U. (2012). Climate change impacts on fisheries in West Africa: Implications for economic, food and nutritional security. African Journal of Marine Science, 34(1), Article 1. https://doi.org/10.2989/1814232X.2012.673294

Lam, V. W. Y., Cheung, W. W. L., Reygondeau, G., & Sumaila, U. R. (2016). Projected change in global fisheries revenues under climate change. Scientific Reports, 6(1), Article 1. https://doi.org/10.1038/srep32607

Leitão, F., Maharaj, R. R., Vieira, V. M. N. C. S., Teodósio, A., & Cheung, W. W. L. (2018). The effect of regional sea surface temperature rise on fisheries along the Portuguese Iberian Atlantic coast. Aquatic Conservation: Marine and Freshwater Ecosystems, 28(6), Article 6. https://doi.org/10.1002/aqc.2947

Lloret, J., Palomera, I., Salat, J., & Sole, I. (2004). Impact of freshwater input and wind on landings of anchovy (Engraulis encrasicolus) and sardine (Sardina pilchardus) in shelf waters surrounding the Ebre (Ebro) River delta (north-western Mediterranean). Fisheries Oceanography, 13(2), Article 2. https://doi.org/10.1046/j.1365-2419.2003.00279.x

Marques, A. C., Fuinhas, J. A., & Menegaki, A. N. (2016). Renewable vs non-renewable electricity and the industrial production nexus: Evidence from an ARDL bounds test approach for Greece. Renewable Energy, 96(PA), 645–655.

Meynecke, J.-O., Lee, S. Y., Duke, N. C., & Warnken, J. (2006). Effect of rainfall as a component of climate change on estuarine fish production in Queensland, Australia. Estuarine, Coastal and Shelf Science, 69(3), Article 3. https://doi.org/10.1016/j.ecss.2006.05.011

Mishra, P., Pandey, C. M., Singh, U., Gupta, A., Sahu, C., & Keshri, A. (2019). Descriptive Statistics and Normality Tests for Statistical Data. Annals of Cardiac Anaesthesia, 22(1), 67–72. https://doi.org/10.4103/aca.ACA_157_18

Munday, P. L., Pratchett, M. S., Dixson, D. L., Donelson, J. M., Endo, G. G. K., Reynolds, A. D., & Knuckey, R. (2013). Elevated CO2 affects the behavior of an ecologically and economically important coral reef fish. Marine Biology, 160(8), Article 8. https://doi.org/10.1007/s00227-012-2111-6

Pauly, D., & Cheung, W. W. L. (2018). Sound physiological knowledge and principles in modeling shrinking of fishes under climate change. Global Change Biology, 24(1), e15–e26. https://doi.org/10.1111/gcb.13831

Pesaran, M. H., & Shin, Y. (1999a). An Autoregressive Distributed-Lag Modelling Approach to Cointegration Analysis. In S. Strøm (Ed.), Econometrics and Economic Theory in the 20th Century: The Ragnar Frisch Centennial Symposium (pp. 371–413). Cambridge University Press. https://doi.org/10.1017/CCOL521633230.011

Pesaran, M. H., & Shin, Y. (1999b). An Autoregressive Distributed-Lag Modelling Approach to Cointegration Analysis. In S. Strøm (Ed.), Econometrics and Economic Theory in the 20th Century: The Ragnar Frisch Centennial Symposium (pp. 371–413). Cambridge University Press. https://doi.org/10.1017/CCOL521633230.011

Pesaran, M. H., Shin, Y., & Smith, R. J. (2001a). Bounds testing approaches to the analysis of level relationships. Journal of Applied Econometrics, 16(3), Article 3. https://doi.org/10.1002/jae.616

Pesaran, M. H., Shin, Y., & Smith, R. J. (2001b). Bounds testing approaches to the analysis of level relationships. Journal of Applied Econometrics, 16(3), Article 3. https://doi.org/10.1002/jae.616

Phillips, P. C. B., & Perron, P. (1988). Testing for a unit root in time series regression. Biometrika, 75(2), 335–346. https://doi.org/10.1093/biomet/75.2.335

Pitchaikani, J. S., & Lipton, A. P. (2012). Impact of environment variables on pelagic fish landings: Special emphasis on Indian oil sardine off Tiruchendur coast, Gulf of Mannar.

Rahman, L. F., Marufuzzaman, M., Alam, L., Bari, M. A., Sumaila, U. R., & Sidek, L. M. (2021). Developing an Ensembled Machine Learning Prediction Model for Marine Fish and Aquaculture Production. Sustainability, 13(16), Article 16. https://doi.org/10.3390/su13169124

Rahman, Md. R., & Lateh, H. (2017). Climate change in Bangladesh: A spatio-temporal analysis and simulation of recent temperature and rainfall data using GIS and time series analysis model. Theoretical and Applied Climatology, 128(1), Article 1. https://doi.org/10.1007/s00704-015-1688-3

Shah, P., Sajeev, R., Thara, K. J., George, G., Shafeeque, M., Akash, S., & Platt, T. (2019). A Holistic Approach to Upwelling and Downwelling along the South-West Coast of India. Marine Geodesy, 42(1), Article 1. https://doi.org/10.1080/01490419.2018.1553805

Shahzad, P. D. S. M. (2023). Towards Building Blue Life Science Economy. Advancements in Life Sciences, 9(4), Article 4.

Shahzad, S. M. (2020). Impact of Pakistan Maritime Affairs on Blue Economy in Backdrop of CPEC. SM Shahzad.

Shahzad, S. M. (2022). Fish industry: A discourse analysis of the future perspective of Pakistan. Biological and Clinical Sciences Research Journal, 2022(1).

Shahzad, S. M. (2023). Marine Life & Fish Management an Effective Tool of Blue Economy of Pakistan. Advancements in Life Sciences, 9(4), 453–457.

Shahzadi, A., Kainat, S., & Ammara, S. (2020). Climate-smart fisheries production in Pakistan: A policy brief and way forward for decision-makers.

Sumaila, U. R., Cheung, W. W. L., Lam, V. W. Y., Pauly, D., & Herrick, S. (2011). Climate change impacts on the biophysics and economics of world fisheries. Nature Climate Change, 1(9), Article 9. https://doi.org/10.1038/nclimate1301

Sunny, A. R., Mithun, M. H., Prodhan, S. H., Ashrafuzzaman, M., Rahman, S. M. A., Billah, M. M., Hussain, M., Ahmed, K. J., Sazzad, S. A., Alam, M. T., Rashid, A., & Hossain, M. M. (2021). Fisheries in the Context of Attaining Sustainable Development Goals (SDGs) in Bangladesh: COVID-19 Impacts and Future Prospects. Sustainability, 13(17), Article 17. https://doi.org/10.3390/su13179912

Szuwalski, C. (2019). Comment on “Impacts of historical warming on marine fisheries production.” Science, 365(6454), Article 6454. https://doi.org/10.1126/science.aax5721

Thiault, L., Mora, C., Cinner, J. E., Cheung, W. W. L., Graham, N. A. J., Januchowski-Hartley, F. A., Mouillot, D., Sumaila, U. R., & Claudet, J. (2019). Escaping the perfect storm of simultaneous climate change impacts on agriculture and marine fisheries. Science Advances, 5(11), eaaw9976. https://doi.org/10.1126/sciadv.aaw9976

Toufique, K. A., & Belton, B. (2014). Is Aquaculture Pro-Poor? Empirical Evidence of Impacts on Fish Consumption in Bangladesh. World Development, 64, 609–620. https://doi.org/10.1016/j.worlddev.2014.06.035

Warsame, A. A., Sheik-Ali, I. A., Ali, A. O., & Sarkodie, S. A. (2021). Climate change and crop production nexus in Somalia: An empirical evidence from ARDL technique. Environmental Science and Pollution Research International, 28(16), 19838–19850. https://doi.org/10.1007/s11356-020-11739-3

Wilson, E. O. (2019). Biodiversity and Climate Change: Transforming the Biosphere. Yale University Press. https://doi.org/10.2307/j.ctv8jnzw1

Zink, I. C., Browder, J. A., Lirman, D., & Serafy, J. E. (2018). Pink shrimp Farfantepenaeus duorarum spatiotemporal abundance trends along an urban, subtropical shoreline slated for restoration. PLOS ONE, 13(11), e0198539. https://doi.org/10.1371/journal.pone.0198539.

Downloads

Published

2023-12-08

How to Cite

SHAHZAD, S. (2023). AN ANALYSIS OF PAKISTAN’S CLIMATIC FACTORS AFFECTING MARINE FISH PRODUCTION. Biological and Clinical Sciences Research Journal, 2023(1), 590. https://doi.org/10.54112/bcsrj.v2023i1.590