ANTIVIRAL SCREENING OF AZADIRACHTA INDICA PHYTOCHEMICALS AS DENGUE NS5 INHIBITOR: A MOLECULAR DOCKING APPROACH

Authors

  • A NAWAZ Applied and Functional Genomics Lab, Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Road Thokar Niaz Baig Lahore, Pakistan
  • B IJAZ Applied and Functional Genomics Lab, Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Road Thokar Niaz Baig Lahore, Pakistan

DOI:

https://doi.org/10.54112/bcsrj.v2023i1.560

Keywords:

Dengue, NS5, Azadirachta Indica, Phytochemicals, Molecular docking, Drug likeness

Abstract

Dengue has been an alarming viral infection in tropical and subtropical regions of the world for the past few decades, resulting in millions of deaths. There is no effective drug to treat this arbovirus-based infection. Dengue virus non-structural protein NS5 contains N terminus methyl transferase domain and C terminus RNA-dependent RNA polymerase domain, which is involved in viral RNA replication and serves as a potential target. The current in-silico study aims to find new potential dengue virus NS5 protein inhibitors. The designed library containing eight compounds from Azadirachta Indica was used to perform molecular docking against active residues of dengue virus NS5 protein. Four compounds (Desacetyl Salanin, Azadirchtin-A, Castalagin, Vilasinin) with high negative binding energy values and zero RMSD values were selected, and their drug-likeness and ADMET analysis was performed. Among the best-docked compounds, Vilasinin (-11kcal/mol) exhibited drug-like properties as it has a molecular weight less than 500 D and has zero violation value. Moreover, it has 5 hydrogen bond donors and 10 hydrogen bond acceptors. It is well soluble in water so that it can be used as a potential inhibitor and drug candidate for the treatment of dengue infection.

Downloads

Download data is not yet available.

References

Abdullah, Amin, F. U., Hassan, N., Bashir, K., Khan, A. A., Bibi, H., Irshad, M., Khan, S., Nawaz, K., and Ullah, Z. (2023). Antimicrobial susceptibility profile of various bacteria isolated from respiratory tract infection. Bulletin of Biological and Allied Sciences Research 2023, 48.

Al Azzam, K. (2022). SwissADME and pkCSM Webservers Predictors: an integrated Online Platform for Accurate and Comprehensive Predictions for In Silico ADME/T Properties of Artemisinin and its Derivatives. Kompleksnoe Ispolzovanie Mineralnogo Syra = Complex use of mineral resources 325, 14-21.

Ali, F., Chorsiya, A., Anjum, V., Khasimbi, S., and Ali, A. (2021). A systematic review on phytochemicals for the treatment of dengue. Phytother Res 35, 1782-1816.

Altamish, M., Khan, M., Baig, M. S., Pathak, B., Rani, V., Akhtar, J., Khan, A. A., Ahmad, S., and Krishnan, A. (2022). Therapeutic Potential of Medicinal Plants against Dengue Infection: A Mechanistic Viewpoint. ACS Omega 7, 24048-24065.

Alzohairy, M. A. (2016). Therapeutics Role of Azadirachta indica (Neem) and Their Active Constituents in Diseases Prevention and Treatment. Evid Based Complement Alternat Med 2016, 7382506.

Chagas, C. M., Moss, S., and Alisaraie, L. (2018). Drug metabolites and their effects on the development of adverse reactions: Revisiting Lipinski’s Rule of Five. International Journal of Pharmaceutics 549, 133-149.

Chavda, V. P., Kumar, A., Banerjee, R., and Das, N. (2022). Ayurvedic and Other Herbal Remedies for Dengue: An Update. Clinical Complementary Medicine and Pharmacology 2, 100024.

Daffis, S., Szretter, K. J., Schriewer, J., Li, J., Youn, S., Errett, J., Lin, T.-Y., Schneller, S., Zust, R., Dong, H., Thiel, V., Sen, G. C., Fensterl, V., Klimstra, W. B., Pierson, T. C., Buller, R. M., Gale Jr, M., Shi, P.-Y., and Diamond, M. S. (2010). 2′-O methylation of the viral mRNA cap evades host restriction by IFIT family members. Nature 468, 452-456.

Dias, D. A., Urban, S., and Roessner, U. (2012). A Historical Overview of Natural Products in Drug Discovery. Metabolites 2, 303-336.

Din, S. Z. U., Fazal, M. O., Ishtiaque, A., and Ullah, A. (2023). Antimicrobial activity of lantana camara against pseudomonas aeruginosa, serratia marcescens and staphylococcus aureus to develop ointment based therapy. Bulletin of Biological and Allied Sciences Research 2023, 33.

El Sahili, A., and Lescar, J. (2017). Dengue Virus Non-Structural Protein 5. Viruses 9.

Hassan, N., Amin, F. U., Bashir, K., Irshad, M., Jamil, S., Munawar, N., Haqqani, H., Shabir, H., and Khan, M. A. (2023). Antiviral response of drugs used against hbv patients of Khyber Pakhtunkhwa, Pakistan. Bulletin of Biological and Allied Sciences Research 2023, 49.

Juan-Pablo, B.-P., David, P.-E., Mónica, S.-R., Ashutosh, S., Daniel, N.-A., Dealmy, D.-G., Rubén, G.-G., Sergio-Everardo, V.-G., Agustina, R.-M., and María-Del-Carmen, V.-M. (2023). Medicinal Plants with Anti-dengue and Immunomodulatory Activity. Current Pharmaceutical Biotechnology 24, 486-494.

Kar, S., and Leszczynski, J. (2020). Open access in silico tools to predict the ADMET profiling of drug candidates. Expert Opinion on Drug Discovery 15, 1473-1487.

Low, J. G., Ooi, E. E., and Vasudevan, S. G. (2017). Current Status of Dengue Therapeutics Research and Development. J Infect Dis 215, S96-s102.

Parida, M., Upadhyay, C., Pandya, G., and Jana, A. (2002a). Inhibitory potential of neem (Azadirachta indica Juss) leaves on dengue virus type-2 replication. Journal of ethnopharmacology 79, 273-278.

Parida, M. M., Upadhyay, C., Pandya, G., and Jana, A. M. (2002b). Inhibitory potential of neem (Azadirachta indica Juss) leaves on Dengue virus type-2 replication. Journal of Ethnopharmacology 79, 273-278.

Qamar, M. T., Ashfaq, U. A., Tusleem, K., Mumtaz, A., Tariq, Q., Goheer, A., and Ahmed, B. (2017). In-silico identification and evaluation of plant flavonoids as dengue NS2B/NS3 protease inhibitors using molecular docking and simulation approach. Pak. J. Pharm. Sci 30, 2119-2137.

Rao, V. B., and Yeturu, K. (2020). Possible Anti-viral effects of Neem (Azadirachta indica) on Dengue virus. bioRxiv, 2020.04.29.069567.

Sampath, A., and Padmanabhan, R. (2009). Molecular targets for flavivirus drug discovery. Antiviral Research 81, 6-15.

Tariq, S., Malik, A., Landry, K. B., Malik, M., Ajnum, H., Latief, N., Malik, K., and Ijaz, B. (2023). In silico screening of compounds derived from tectona grandis leaves against covid-19 nsp12 and nsp15 through molecular docking approach. Biological and Clinical Sciences Research Journal 2023, 285.

Tay, M. Y. F., Smith, K., Ng, I. H. W., Chan, K. W. K., Zhao, Y., Ooi, E. E., Lescar, J., Luo, D., Jans, D. A., Forwood, J. K., and Vasudevan, S. G. (2016). The C-terminal 18 Amino Acid Region of Dengue Virus NS5 Regulates its Subcellular Localization and Contains a Conserved Arginine Residue Essential for Infectious Virus Production. PLOS Pathogens 12, e1005886.

Ullah, I., Ullah, A., Rehman, S., Ullah, S., Ullah, H., Haqqni, S., Amir, M., Gul, F., and Bashir, K. (2023a). Prevalence and risk factors of helicobacter pylori infection among individuals with tobacco consumption habits in district peshawar: a cross-sectional study. Bulletin of Biological and Allied Sciences Research 2023, 42.

Ullah, W., Ullah, A., Khan, M. A., Hassan, N., Aman, K., Khan, S., Hassan, S., and Hazrat, A. (2023b). Microbial profile and nutritional evaluation of broiler and domestic chicken meat from selected districts of khyber Pakhtunkhwa, Pakistan. Bulletin of Biological and Allied Sciences Research 2023, 34.

Velmurugan, D., Malar Selvi, U., Mythily, U., Rao, K., and Rajarajeshwari, R. (2012). Structure-based discovery of anti-viral compounds for hepatitis B & C, human immunodeficiency, and dengue viruses. Current Bioinformatics 7, 187-211.

Vora, J., Patel, S., Athar, M., Sinha, S., Chhabria, M. T., Jha, P. C., and Shrivastava, N. (2020). Pharmacophore modeling, molecular docking and molecular dynamics simulation for screening and identifying anti-dengue phytocompounds. Journal of Biomolecular Structure and Dynamics 38, 1726-1740.

Yadav, D. K., Kalani, K., Khan, F., and Srivastava, S. K. (2013). QSAR and docking based semi-synthesis and in vitro evaluation of 18 β-glycyrrhetinic acid derivatives against human lung cancer cell line A-549. Med Chem 9, 1073-84.

Yap, T. L., Xu, T., Chen, Y.-L., Malet, H., Egloff, M.-P., Canard, B., Vasudevan, S. G., and Lescar, J. (2007). Crystal Structure of the Dengue Virus RNA-Dependent RNA Polymerase Catalytic Domain at 1.85-Angstrom Resolution. Journal of Virology 81, 4753-4765.

Zhao, Y., Soh, T. S., Zheng, J., Chan, K. W., Phoo, W. W., Lee, C. C., Tay, M. Y., Swaminathan, K., Cornvik, T. C., Lim, S. P., Shi, P. Y., Lescar, J., Vasudevan, S. G., and Luo, D. (2015). A crystal structure of the Dengue virus NS5 protein reveals a novel inter-domain interface essential for protein flexibility and virus replication. PLoS Pathog 11, e1004682.

Downloads

Published

2023-11-27

How to Cite

NAWAZ, A., & IJAZ, B. (2023). ANTIVIRAL SCREENING OF AZADIRACHTA INDICA PHYTOCHEMICALS AS DENGUE NS5 INHIBITOR: A MOLECULAR DOCKING APPROACH. Biological and Clinical Sciences Research Journal, 2023(1), 560. https://doi.org/10.54112/bcsrj.v2023i1.560

Most read articles by the same author(s)