DISCOVERING THE POTENTIAL IMPACT OF SELENIUM TO ALLEVIATE DROUGHT STRESS IN BARLEY (HORDEUM VULGARE L.) VIA PHYSIOLOGICAL INTERFERENCES

Authors

  • MF ALI Department of Agronomy, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
  • AUH SHAH Agronomy Forage Production, Ayub Agricultural Research Institute Faisalabad, Pakistan
  • MH ALVI Department of Agronomy, College of Agriculture, University of Sargodha, Pakistan
  • A NAWAZ Soil Chemistry Section, Ayub Agricultural Research Institute, Faisalabad, Pakistan
  • OU KHAN Office of Chief Scientist Agriculture (Research), Ayub Agricultural Research Institute, Faisalabad, Pakistan
  • N IQBAL Office of Chief Scientist Agriculture (Research), Ayub Agricultural Research Institute, Faisalabad, Pakistan
  • A MAHMOOD Soil and Water Testing Laboratory Jhang, Pakistan
  • MT SHAH Soil & Water Testing Laboratory, Toba Tek Singh, Pakistan
  • HN RAMZAN Agronomy Research Institute, Ayub Agricultural Research Institute Faisalabad, Pakistan
  • MA SARWAR Soil & Water Testing Lab for Research, Faisalabad, Pakistan

DOI:

https://doi.org/10.54112/bcsrj.v2023i1.464

Keywords:

Drought, Physiology, Cultivars, Osmolytes, Selenium

Abstract

Drought stress is a significant environmental issue that directly impacts plant growth and development by limiting water availability and affecting the overall health of plants. However, innovative solutions are needed to protect plant health and productivity against this significant environmental issue by using all available techniques. By considering this major issue, the pot study aimed to check the potential of foliar application of selenium @ 10mM on various morphological, physiological, and yield aspects of two barley cultivars viz. Jau-17 and Sultan-17 under three different field capacities, including 100%, 75%, and 50% FC, respectively. The results showed maximum plant growth reduction was noticed at 50% FC in both barley cultivars. Interestingly, selenium helped to boost proline content, relative water content (RWC), SPAD chlorophyll, leaf area index (LAI) while it helped to decrease excised leaf water lose (ELWL), membrane thermostability index (MTSI) under drought stress conditions. In addition, various plant morphological and yield-related components were improved by selenium application under drought conditions. Among cultivars, Jau-17 gave the best results in stress tolerance. Conclusively, it is suggested to check the potential of selenium in field conditions under drought stress, especially in rainfed areas.

Downloads

Download data is not yet available.

References

Aaliya, K., Qamar, Z., Ahmad, N. I., Ali, Q., Munim, F. A., & Husnain, T. (2016). Transformation, evaluation of gtgene and multivariate genetic analysis for morpho-physiological and yield attributing traits in Zea mays. Genetika, 48(1), 423-433.

Abdelaal, K., AlKahtani, M., Attia, K., Hafez, Y., Király, L., & Künstler, A. (2021). The role of plant growth-promoting bacteria in alleviating the adverse effects of drought on plants. Biology, 10(6), 520.

Abbas, H. G., Mahmood, A., & Ali, Q. (2016). Zero tillage: a potential technology to improve cotton yield. Genetika, 48(2), 761-776.

Ahanger, M. A., Morad‐Talab, N., Abd‐Allah, E. F., Ahmad, P., & Hajiboland, R. (2016). Plant growth under drought stress: Significance of mineral nutrients. Water Stress and Crop Plants: A Sustainable Approach, 2, 649–668.

Ahluwalia, O., Singh, P. C., & Bhatia, R. (2021). A review on drought stress in plants: Implications, mitigation and the role of plant growth promoting rhizobacteria. Resources, Environment and Sustainability, 5, 100032.

Ahmad, R., Waraich, E. A., Nawaz, F., Ashraf, M. Y., & Khalid, M. (2016). Selenium (Se) improves drought tolerance in crop plants–a myth or fact? Journal of the Science of Food and Agriculture, 96(2), 372–380.

Ali, Q., Ahsan, M., Ali, F., Aslam, M., Khan, N. H., Munzoor, M., ... & Muhammad, S. (2013). Heritability, heterosis and heterobeltiosis studies for morphological traits of maize (Zea mays L.) seedlings. Advancements in Life sciences, 1(1): 52-63.

Ali, Q., Ahsan, M., Kanwal, N., Ali, F., Ali, A., Ahmed, W., ... & Saleem, M. (2016). Screening for drought tolerance: comparison of maize hybrids under water deficit condition. Advancements in Life Sciences, 3(2), 51-58.

Ali, F., Ahsan, M., Ali, Q., & Kanwal, N. (2017). Phenotypic stability of Zea mays grain yield and its attributing traits under drought stress. Frontiers in plant science, 8, 1397. https://doi.org/10.3389/fpls.2017.01397

Ali, Q., Ali, A., Ahsan, M., Nasir, I. A., Abbas, H. G., & Ashraf, M. A. (2014). Line× Tester analysis for morpho-physiological traits of Zea mays L seedlings. Advancements in Life sciences, 1(4), 242-253.

Amelework, B., Shimelis, H., Tongoona, P., & Laing, M. (2015). Physiological mechanisms of drought tolerance in sorghum, genetic basis and breeding methods: A review. African Journal of Agricultural Research, 10(31), 3029–3040.

Anjum, S. A., Ashraf, U., Zohaib, A., Tanveer, M., Naeem, M., Ali, I., Tabassum, T., & Nazir, U. (2017). Growth and developmental responses of crop plants under drought stress: a review. Zemdirbyste-Agriculture, 104(3).

Batool, F., Hassan, S., Azam, S., Sher, Z., Ali, Q., & Rashid, B. (2023). Transformation and expressional studies of GaZnF gene to improve drought tolerance in Gossypium hirsutum. Scientific Reports, 13(1), 5064. https://doi.org/10.1038/s41598-023-32383-0

Berger, J., Palta, J., & Vadez, V. (2016). An integrated framework for crop adaptation to dry environments: Responses to transient and terminal drought. Plant Science, 253, 58–67.

Chauhan, R., Awasthi, S., Srivastava, S., Dwivedi, S., Pilon-Smits, E. A. H., Dhankher, O. P., & Tripathi, R. D. (2019). Understanding selenium metabolism in plants and its role as a beneficial element. Critical Reviews in Environmental Science and Technology, 49(21), 1937–1958.

Cipriano, P. E., da Silva, R. F., de Lima, F. R. D., de Oliveira, C., de Lima, A. B., Celante, G., Dos Santos, A. A., Archilha, M. V. L. R., Pinatto-Botelho, M. F., & Faquin, V. (2022). Selenium biofortification via soil and its effect on plant metabolism and mineral content of sorghum plants. Journal of Food Composition and Analysis, 109, 104505.

Djanaguiraman, M., Belliraj, N., Bossmann, S. H., & Prasad, P. V. V. (2018). High-temperature stress alleviation by selenium nanoparticle treatment in grain sorghum. ACS Omega, 3(3), 2479–2491.

dos Santos, T. B., Ribas, A. F., de Souza, S. G. H., Budzinski, I. G. F., & Domingues, D. S. (2022). Physiological responses to drought, salinity, and heat stress in plants: a review. Stresses, 2(1), 113–135.

Fang, Y., & Xiong, L. (2015). General mechanisms of drought response and their application in drought resistance improvement in plants. Cellular and Molecular Life Sciences, 72, 673–689.

Farooq, M., Gogoi, N., Barthakur, S., Baroowa, B., Bharadwaj, N., Alghamdi, S. S., & Siddique, K. H. M. (2017). Drought stress in grain legumes during reproduction and grain filling. Journal of Agronomy and Crop Science, 203(2), 81–102.

Farooq, M., Hussain, M., Wahid, A., & Siddique, K. H. M. (2012). Drought stress in plants: an overview. Plant Responses to Drought Stress: From Morphological to Molecular Features, 1–33.

Ferdous, J., Sanchez‐Ferrero, J. C., Langridge, P., Milne, L., Chowdhury, J., Brien, C., & Tricker, P. J. (2017). Differential expression of microRNAs and potential targets under drought stress in barley. Plant, Cell & Environment, 40(1), 11–24.

Ghosh, U. K., Islam, M. N., Siddiqui, M. N., Cao, X., & Khan, M. A. R. (2022). Proline, a multifaceted signalling molecule in plant responses to abiotic stress: understanding the physiological mechanisms. Plant Biology, 24(2), 227–239.

Habibi, G., & Aleyasin, Y. (2020). Green synthesis of Se nanoparticles and its effect on salt tolerance of barley plants. Int. J. Nano Dimens, 11(2), 145–157.

Harwood, W. A. (2019). An introduction to barley: the crop and the model. Barley: Methods and Protocols, 1–5.

Hasanuzzaman, M. D., Shabala, L., Brodribb, T. J., Zhou, M., & Shabala, S. (2016). Assessing the suitability of various screening methods as a proxy for drought tolerance in barley. Functional Plant Biology, 44(2), 253–266.

Hayat, F., Khan, U., Li, J., Ahmed, N., Khanum, F., Iqbal, S., Altaf, M. A., Ahmad, J., Javed, H. U., & Peng, Y. (2023). γ Aminobutyric Acid (GABA): A Key Player in Alleviating Abiotic Stress Resistance in Horticultural Crops: Current Insights and Future Directions. Horticulturae, 9(6), 647.

Hossain, A., Skalicky, M., Brestic, M., Maitra, S., Sarkar, S., Ahmad, Z., Vemuri, H., Garai, S., Mondal, M., & Bhatt, R. (2021). Selenium biofortification: roles, mechanisms, responses and prospects. Molecules, 26(4), 881.

Kandhol, N., Jain, M., & Tripathi, D. K. (2022). Nanoparticles as potential hallmarks of drought stress tolerance in plants. Physiologia Plantarum, 174(2), e13665.

Kapoor, B., Kumar, P., Gill, N. S., Sharma, R., Thakur, N., & Irfan, M. (2023). Molecular mechanisms underpinning the silicon-selenium (Si-Se) interactome and cross-talk in stress-induced plant responses. Plant and Soil, 486(1–2), 45–68.

Karumannil, S., Khan, T. A., Kappachery, S., & Gururani, M. A. (2023). Impact of Exogenous Melatonin Application on Photosynthetic Machinery under Abiotic Stress Conditions. Plants, 12(16), 2948.

Kebede, A., Kang, M. S., & Bekele, E. (2019). Advances in mechanisms of drought tolerance in crops, with emphasis on barley. Advances in Agronomy, 156, 265–314.

Khan, M. I. R., Nazir, F., Asgher, M., Per, T. S., & Khan, N. A. (2015). Selenium and sulfur influence ethylene formation and alleviate cadmium-induced oxidative stress by improving proline and glutathione production in wheat. Journal of Plant Physiology, 173, 9–18.

Kogo, B. K., Kumar, L., & Koech, R. (2021). Climate change and variability in Kenya: a review of impacts on agriculture and food security. Environment, Development and Sustainability, 23, 23–43.

Mostofa, M. G., Rahman, M. M., Ansary, M. M. U., Keya, S. S., Abdelrahman, M., Miah, M. G., & Phan Tran, L.-S. (2021). Silicon in mitigation of abiotic stress-induced oxidative damage in plants. Critical Reviews in Biotechnology, 41(6), 918–934.

Nagdalian, A. A., Blinov, A. V., Siddiqui, S. A., Gvozdenko, A. A., Golik, A. B., Maglakelidze, D. G., Rzhepakovsky, I. V., Kukharuk, M. Y., Piskov, S. I., & Rebezov, M. B. (2023). Effect of selenium nanoparticles on biological and morphofunctional parameters of barley seeds (Hordéum vulgáre L.). Scientific Reports, 13(1), 6453.

Naseem, M., Anwar-ul-Haq, M., Wang, X., Farooq, N., Awais, M., Sattar, H., Ahmed Malik, H., Mustafa, A., Ahmad, J., & El-Esawi, M. A. (2021). Influence of selenium on growth, physiology, and antioxidant responses in maize varies in a dose-dependent manner. Journal of Food Quality, 2021, 1–9.

Nawaz, F., Ahmad, R., Ashraf, M. Y., Waraich, E. A., & Khan, S. Z. (2015). Effect of selenium foliar spray on physiological and biochemical processes and chemical constituents of wheat under drought stress. Ecotoxicology and Environmental Safety, 113, 191–200.

Pandey, P., Irulappan, V., Bagavathiannan, M. V, & Senthil-Kumar, M. (2017). Impact of combined abiotic and biotic stresses on plant growth and avenues for crop improvement by exploiting physio-morphological traits. Frontiers in Plant Science, 8, 537.

Panigrahi, N., & Das, B. S. (2021). Evaluation of regression algorithms for estimating leaf area index and canopy water content from water stressed rice canopy reflectance. Information Processing in Agriculture, 8(2), 284–298.

Pecio, A., & Wach, D. (2015). Grain yield and yield components of spring barley genotypes as the indicators of their tolerance to temporal drought stress. Polish Journal of Agronomy, 21, 19–27.

Pisoschi, A. M., & Pop, A. (2015). The role of antioxidants in the chemistry of oxidative stress: A review. European Journal of Medicinal Chemistry, 97, 55–74.

Rady, M. M., Belal, H. E. E., Gadallah, F. M., & Semida, W. M. (2020). Selenium application in two methods promotes drought tolerance in Solanum lycopersicum plant by inducing the antioxidant defense system. Scientia Horticulturae, 266, 109290.

Rady, M. M., Desoky, E.-S. M., Ahmed, S. M., Majrashi, A., Ali, E. F., Arnaout, S. M. A. I., & Selem, E. (2021). Foliar nourishment with nano-selenium dioxide promotes physiology, biochemistry, antioxidant defenses, and salt tolerance in phaseolus vulgaris. Plants, 10(6), 1189.

Rao, N. K. S., Laxman, R. H., & Shivashankara, K. S. (2016). Physiological and morphological responses of horticultural crops to abiotic stresses. Abiotic Stress Physiology of Horticultural Crops, 3–17.

Raza, A., Charagh, S., Abbas, S., Hassan, M. U., Saeed, F., Haider, S., Sharif, R., Anand, A., Corpas, F. J., & Jin, W. (2023). Assessment of proline function in higher plants under extreme temperatures. Plant Biology, 25(3), 379–395.

Sami, A., Haider, M., Meeran, M., Ali, M., Abbas, A., Ali, Q., and Umar, M. (2023). Exploring morphological traits variation in chenopodium murale: a comprehensive multivariate analysis. Bulletin of Biological and Allied Sciences Research 2023, 43-43 https://doi.org/10.54112/bbasr.v2023i1.43.

Sehar, S., Adil, M. F., Zeeshan, M., Holford, P., Cao, F., Wu, F., & Wang, Y. (2021). Mechanistic insights into potassium-conferred drought stress tolerance in cultivated and tibetan wild barley: Differential osmoregulation, nutrient retention, secondary metabolism and antioxidative defense capacity. International Journal of Molecular Sciences, 22(23), 13100.

Seleiman, M. F., Al-Suhaibani, N., Ali, N., Akmal, M., Alotaibi, M., Refay, Y., Dindaroglu, T., Abdul-Wajid, H. H., & Battaglia, M. L. (2021). Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants, 10(2), 259.

Siddiqui, S. A., Blinov, A. V., Serov, A. V., Gvozdenko, A. A., Kravtsov, A. A., Nagdalian, A. A., Raffa, V. V., Maglakelidze, D. G., Blinova, A. A., & Kobina, A. V. (2021). Effect of selenium nanoparticles on germination of hordéum vulgáre barley seeds. Coatings, 11(7), 862.

Silvestre, S., de Sousa Araújo, S., Vaz Patto, M. C., & Marques da Silva, J. (2014). Performance index: an expeditious tool to screen for improved drought resistance in the Lathyrus genus. Journal of Integrative Plant Biology, 56(7), 610–621.

Singhal, R. K., Fahad, S., Kumar, P., Choyal, P., Javed, T., Jinger, D., Singh, P., Saha, D., Md, P., & Bose, B. (2023). Beneficial elements: New Players in improving nutrient use efficiency and abiotic stress tolerance. Plant Growth Regulation, 100(2), 237–265.

Ul Hassan, M., Rasool, T., Iqbal, C., Arshad, A., Abrar, M., Abrar, M. M., Habib-ur-Rahman, M., Noor, M. A., Sher, A., & Fahad, S. (2021). Linking plants functioning to adaptive responses under heat stress conditions: a mechanistic review. Journal of Plant Growth Regulation, 1–18.

Wahab, A., Abdi, G., Saleem, M. H., Ali, B., Ullah, S., Shah, W., Mumtaz, S., Yasin, G., Muresan, C. C., & Marc, R. A. (2022). Plants’ physio-biochemical and phyto-hormonal responses to alleviate the adverse effects of drought stress: A comprehensive review. Plants, 11(13), 1620.

Zaib, M. (2023). Micronutrients and Their significance in Agriculture: A Mini Review with Future Prospects.

Zeeshan, M., Hu, Y. X., Iqbal, A., Salam, A., Liu, Y. X., Muhammad, I., Ahmad, S., Khan, A. H., Hale, B., & Wu, H. Y. (2021). Amelioration of AsV toxicity by concurrent application of ZnO-NPs and Se-NPs is associated with differential regulation of photosynthetic indexes, antioxidant pool and osmolytes content in soybean seedling. Ecotoxicology and Environmental Safety, 225, 112738.

Downloads

Published

2023-10-17

How to Cite

ALI, M., SHAH, A., ALVI, M., NAWAZ, A., KHAN, O., IQBAL, N., MAHMOOD, A., SHAH, M., RAMZAN, H., & SARWAR, M. (2023). DISCOVERING THE POTENTIAL IMPACT OF SELENIUM TO ALLEVIATE DROUGHT STRESS IN BARLEY (HORDEUM VULGARE L.) VIA PHYSIOLOGICAL INTERFERENCES. Biological and Clinical Sciences Research Journal, 2023(1), 464. https://doi.org/10.54112/bcsrj.v2023i1.464

Most read articles by the same author(s)

1 2 > >>