NUTRIENT TRANSFORMATION THROUGH NANOFERTILIZERS IN SOIL

Authors

  • HU REHMAN Soil and Water Testing Laboratory Sialkot, Pakistan
  • R KAUSAR Soil and Water Testing Laboratory Sargodha, Pakistan
  • S NAWAZ Soil and Water Testing Laboratory Sargodha, Pakistan
  • F AKRAM Soil and Water Testing Laboratory Nankana Shib, Pakistan
  • M ASIF Soil and Water Testing Laboratory Bahawalnagar, Pakistan
  • S ALI Soil Fertility, Jhang, Pakistan
  • S KAUSAR Pesticide Quality Control Laboratory Bahawalpur, Pakistan
  • M NADEEM Soil and Water Testing Laboratory Hafizabad, Pakistan
  • M IMRAN Soil and Water Testing Laboratory Rahim Yar Khan, Pakistan
  • MA SARWAR Soil and Water Testing Laboratory, Ayub Agricultural Research Institute Faisalabad, Pakistan

DOI:

https://doi.org/10.54112/bcsrj.v2023i1.483

Keywords:

Modern technologies, Nano-fertilizers, Nano-particles, Ecofriendly, Synthesis

Abstract

Global population growth during the past ten years has compelled the agricultural industry to boost crop yield to meet the requirements of billions of emerging nations. Widespread nutrient shortage in soil has caused a major nutritional value decline and substantial financial losses for farmers. Agriculture can only grow by using modern innovations wisely to raise output. The application of nanotechnology to plant science and agriculture has increased recently. The development of nanotechnology has made it easier to produce physiologically significant metal nanoparticles on a large scale. These nanoparticles are currently utilized to enhance fertilizers formulation for greater plant cell absorption and reducing nutrient loss. Ongoing study provides a fresh impression of nanoparticles (NPs) biosynthesis, their use as nano-fertilizers and nano-pesticides, their application in agriculture, and their contribution to improving the performance of bio factors. An overview of NPs-plant interactions, the destiny and fate of nanomaterials in plants, and the role of NPs in reducing the negative impacts of toxicity and stress has been provided. The information in the current review paper is essential for identifying the restrictions and potential uses of nano-fertilizers as a replacement for traditional fertilizers in the future.

Downloads

Download data is not yet available.

References

Abd El-All, A. (2019). Nano-Fertilizer application to increase growth and yield of sweet pepper under potassium levels. Agri. Res. Tech.: Open Access J, 19(4), 145-156.

Adhikari, T., Kundu, S., Biswas, A., Tarafdar, J., & Subba Rao, A. (2015). Characterization of zinc oxide nano particles and their effect on growth of maize (Zea mays L.) plant. Journal of Plant Nutrition, 38(10), 1505-1515.

Arshad, M., Merlina, G., Uzu, G., Sobanska, S., Sarret, G., Dumat, C., . . . Kallerhoff, J. (2016). Phytoavailability of lead altered by two Pelargonium cultivars grown on contrasting lead-spiked soils. Journal of soils and sediments, 16(2), 581-591.

Bano, I., Skalickova, S., Sajjad, H., Skladanka, J., & Horky, P. (2021). Uses of selenium nanoparticles in the plant production. Agronomy, 11(11), 2229.

Basavegowda, N., & Baek, K.-H. (2021). Current and future perspectives on the use of nanofertilizers for sustainable agriculture: the case of phosphorus nanofertilizer. 3 Biotech, 11(7), 1-21.

Badawy, A. A., Abdelfattah, N. A., Salem, S. S., Awad, M. F., & Fouda, A. (2021). Efficacy assessment of biosynthesized copper oxide nanoparticles (CuO-NPs) on stored grain insects and their impacts on morphological and physiological traits of wheat (Triticum aestivum L.) plant. Biology, 10(3), 233.

Belal, E.-S., & El-Ramady, H. (2016). Nanoparticles in water, soils and agriculture Nanoscience in food and agriculture 2 (pp. 311-358): Springer.

Broadley, M. R., White, P. J., Hammond, J. P., Zelko, I., & Lux, A. (2007). Zinc in plants. New phytologist, 173(4), 677-702.

Broos, K., Warne, M. S. J., Heemsbergen, D. A., Stevens, D., Barnes, M. B., Correll, R. L., & McLaughlin, M. J. (2007). Soil factors controlling the toxicity of copper and zinc to microbial processes in Australian soils. Environmental Toxicology and Chemistry: An International Journal, 26(4), 583-590.

Bryjak, M., Wolska, J., & Kabay, N. (2008). Removal of boron from seawater by adsorption–membrane hybrid process: implementation and challenges. Desalination, 223(1-3), 57-62.

Butt, B. Z., & Naseer, I. (2020). Nanofertilizers Nanoagronomy (pp. 125-152): Springer.

Cheng, B., Wang, C., Chen, F., Yue, L., Cao, X., Liu, X., ... & Xing, B. (2022). Multiomics understanding of improved quality in cherry radish (Raphanus sativus L. var. radculus pers) after foliar application of selenium nanomaterials. Science of The Total Environment, 824, 153712.

Chinnamuthu, C., & Boopathi, P. M. (2009). Nanotechnology and agroecosystem. Madras Agricultural Journal, 96(1/6), 17-31.

Cieschi, M. T., Polyakov, A. Y., Lebedev, V. A., Volkov, D. S., Pankratov, D. A., Veligzhanin, A. A., . . . Lucena, J. J. (2019). Eco-friendly iron-humic nanofertilizers synthesis for the prevention of iron chlorosis in soybean (Glycine max) grown in calcareous soil. Frontiers in plant science, 10, 413.

del Pino, J. N., Padrón, I. A., Martin, M. G., & Hernández, J. G. (1995). Phosphorus and potassium release from phillipsite-based slow-release fertilizers. Journal of controlled release, 34(1), 25-29.

Delfani, M., Baradarn Firouzabadi, M., Farrokhi, N., & Makarian, H. (2014). Some physiological responses of black-eyed pea to iron and magnesium nanofertilizers. Communications in soil science and plant analysis, 45(4), 530-540.

DeRosa, M. C., Monreal, C., Schnitzer, M., Walsh, R., & Sultan, Y. (2010). Nanotechnology in fertilizers. Nature nanotechnology, 5(2), 91-91.

Eberl, D. (2002). Controlled-release fertilizers using zeolites. US Geological Survey, Technology transfer.

Eichert, T., Kurtz, A., Steiner, U., & Goldbach, H. E. (2008). Size exclusion limits and lateral heterogeneity of the stomatal foliar uptake pathway for aqueous solutes and water‐suspended nanoparticles. Physiologia plantarum, 134(1), 151-160.

El-Ramady, H., Abdalla, N., Alshaal, T., El-Henawy, A., Elmahrouk, M., Bayoumi, Y., . . . Fári, M. (2018). Plant nano-nutrition: perspectives and challenges. Nanotechnology, food security and water treatment, 129-161.

Farhana, Munis, M. F. H., Alamer, K. H., Althobaiti, A. T., Kamal, A., Liaquat, F., ... & Attia, H. (2022). ZnO nanoparticle-mediated seed priming induces biochemical and antioxidant changes in chickpea to alleviate Fusarium wilt. Journal of Fungi, 8(7), 753.

Fansuri, H., Pritchard, D., & Zhang, D.-K. (2008). Manufacture of Low-Grade Zeolites from Fly Ash for Fertiliser Applications.

Fernández, V., & Eichert, T. (2009). Uptake of hydrophilic solutes through plant leaves: current state of knowledge and perspectives of foliar fertilization. Critical Reviews in Plant Sciences, 28(1-2), 36-68.

Ghafariyan, M. H., Malakouti, M. J., Dadpour, M. R., Stroeve, P., & Mahmoudi, M. (2013). Effects of magnetite nanoparticles on soybean chlorophyll. Environmental science & technology, 47(18), 10645-10652.

Ghani, M. I., Saleem, S., Rather, S. A., Rehmani, M. S., Alamri, S., Rajput, V. D., ... & Liu, M. (2022). Foliar application of zinc oxide nanoparticles: An effective strategy to mitigate drought stress in cucumber seedling by modulating antioxidant defense system and osmolytes accumulation. Chemosphere, 289, 133202.

Ghorbani, H. R. (2014). A review of methods for synthesis of Al nanoparticles. Orient. J. chem, 30(4), 1941-1949.

Ghoto, K., Simon, M., Shen, Z. J., Gao, G. F., Li, P. F., Li, H., & Zheng, H. L. (2020). Physiological and root exudation response of maize seedlings to TiO 2 and SiO 2 nanoparticles exposure. BioNanoScience, 10, 473-485.

Gupta, G., Borowiec, J., & Okoh, J. (1997). Toxicity identification of poultry litter aqueous leachate. Poultry Science, 76(10), 1364-1367.

Hershey, D., Paul, J., & Carlson, R. (1980). Evaluation of potassium-enriched clinoptilolite as a potassium source for potting media. HortScience, 15(1), 87-89.

Janmohammadi, M., Sabaghnia, N., & Ahadnezhad, A. (2015). Impact of silicon dioxide nanoparticles on seedling early growth of lentil (Lens culinaris Medik.) genotypes with various origins. Agriculture & Forestry/Poljoprivreda i Sumarstvo, 61(3).

Kithome, M., Paul, J., Lavkulich, L., & Bomke, A. (1998). Kinetics of ammonium adsorption and desorption by the natural zeolite clinoptilolite. Soil Science Society of America Journal, 62(3), 622-629.

Kottegoda, N., Munaweera, I., Madusanka, N., & Karunaratne, V. (2011). A green slow-release fertilizer composition based on urea-modified hydroxyapatite nanoparticles encapsulated wood. Current science, 73-78.

Kumar, Y., SINGH, K. T. T., & RALIYA, R. (2021). Nanofertilizers and their role in sustainable agriculture. Annals of Plant and Soil Research, 23(3), 238-255.

Kurepa, J., Paunesku, T., Vogt, S., Arora, H., Rabatic, B. M., Lu, J., . . . Smalle, J. A. (2010). Uptake and distribution of ultrasmall anatase TiO2 Alizarin red S nanoconjugates in Arabidopsis thaliana. Nano letters, 10(7), 2296-2302.

Lee, W. M., An, Y. J., Yoon, H., & Kweon, H. S. (2008). Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum aestivum): plant agar test for water‐insoluble nanoparticles. Environmental Toxicology and Chemistry: An International Journal, 27(9), 1915-1921.

Lin, D., Tian, X., Wu, F., & Xing, B. (2010). Fate and transport of engineered nanomaterials in the environment. Journal of environmental quality, 39(6), 1896-1908.

Liu, R., & Lal, R. (2014). Synthetic apatite nanoparticles as a phosphorus fertilizer for soybean (Glycine max). Scientific reports, 4(1), 1-6.

Liu, R., & Lal, R. (2015). Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Science of the total environment, 514, 131-139.

Ma, X., Geiser-Lee, J., Deng, Y., & Kolmakov, A. (2010). Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. Science of the total environment, 408(16), 3053-3061.

Malakouti, M. J. (2008). The effect of micronutrients in ensuring efficient use of macronutrients. Turkish Journal of Agriculture and Forestry, 32(3), 215-220.

Mazhar, M. W., Ishtiaq, M., Maqbool, M., & Akram, R. (2023). Seed priming with zinc oxide nanoparticles improves growth, osmolyte accumulation, antioxidant defence and yield quality of water-stressed mung bean plants. Arid Land Research and Management, 37(2), 222-246.

Naderi, M., & Danesh-Shahraki, A. (2013). Nanofertilizers and their roles in sustainable agriculture. International Journal of Agriculture and Crop Sciences (IJACS), 5(19), 2229-2232.

Nagula, S., & Usha, P. (2016). Application of nanotechnology in soil and plant system with special reference to nanofertilizers. Advances in Life Sciences, 1(14), 5544-5548.

Nair, R., Varghese, S. H., Nair, B. G., Maekawa, T., Yoshida, Y., & Kumar, D. S. (2010). Nanoparticulate material delivery to plants. Plant science, 179(3), 154-163.

Nekrasova, G., Ushakova, O., Ermakov, A., Uimin, M., & Byzov, I. (2011). Effects of copper (II) ions and copper oxide nanoparticles on Elodea densa Planch. Russian Journal of Ecology, 42(6), 458-463.

Noreen, S., Fatima, Z., Ahmad, S., Athar, H.-u.-R., & Ashraf, M. (2018). Foliar application of micronutrients in mitigating abiotic stress in crop plants Plant nutrients and abiotic stress tolerance (pp. 95-117): Springer.

Palmqvist, N., Seisenbaeva, G. A., Svedlindh, P., & Kessler, V. G. (2017). Maghemite nanoparticles acts as nanozymes, improving growth and abiotic stress tolerance in Brassica napus. Nanoscale research letters, 12(1), 1-9.

Pardha-Saradhi, P., Yamal, G., Peddisetty, T., Sharmila, P., Singh, J., Nagarajan, R., & Rao, K. (2014). Plants fabricate Fe-nanocomplexes at root surface to counter and phytostabilize excess ionic Fe. Biometals, 27(1), 97-114.

Patra, S., Mishra, P., Mahapatra, S., & Mithun, S. (2016). Modelling impacts of chemical fertilizer on agricultural production: a case study on Hooghly district, West Bengal, India. Modeling Earth Systems and Environment, 2(4), 1-11.

Preetha, P. S., & Balakrishnan, N. (2017). A review of nano fertilizers and their use and functions in soil. Int. J. Curr. Microbiol. Appl. Sci, 6(12), 3117-3133.

Qureshi, A., Singh, D., & Dwivedi, S. (2018). Nano-fertilizers: a novel way for enhancing nutrient use efficiency and crop productivity. Int. J. Curr. Microbiol. App. Sci, 7(2), 3325-3335.

Rahale, S. (2011). Nutrient release pattern of nanofertilizer formulation. PhD (Agri.) Thesis. Tamilnadu Agricultural University, Coimbatore.

Rico, C. M., Majumdar, S., Duarte-Gardea, M., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2011). Interaction of nanoparticles with edible plants and their possible implications in the food chain. Journal of agricultural and food chemistry, 59(8), 3485-3498.

Rop, K., Karuku, G. N., Mbui, D., Michira, I., & Njomo, N. (2018). Formulation of slow release NPK fertilizer (cellulose-graft-poly (acrylamide)/nano-hydroxyapatite/soluble fertilizer) composite and evaluating its N mineralization potential. Annals of Agricultural Sciences, 63(2), 163-172.

Sabarudin, A., Oshita, K., Oshima, M., & Motomizu, S. (2005). Synthesis of cross-linked chitosan possessing N-methyl-d-glucamine moiety (CCTS-NMDG) for adsorption/concentration of boron in water samples and its accurate measurement by ICP-MS and ICP-AES. Talanta, 66(1), 136-144.

Schmidt, R., & Szakál, P. (2007). The application of copper and zinc containing ion-exchanged synthesised zeolite in agricultural plant growing. Nova Biotechnologica VII-I, 57-62.

Sharonova, N., Yapparov, A. K., Khisamutdinov, N. S., Ezhkova, A., Yapparov, I., Ezhkov, V., . . . Babynin, E. (2015). Nanostructured water-phosphorite suspension is a new promising fertilizer. Nanotechnologies in Russia, 10(7), 651-661.

Sheta, A., Falatah, A., Al-Sewailem, M., Khaled, E., & Sallam, A. (2003). Sorption characteristics of zinc and iron by natural zeolite and bentonite. Microporous and Mesoporous Materials, 61(1-3), 127-136.

Singh, M. D. (2017). Nano-fertilizers is a new way to increase nutrients use efficiency in crop production. International Journal of Agriculture Sciences, ISSN, 0975-3710.

Solanki, P., Bhargava, A., Chhipa, H., Jain, N., & Panwar, J. (2015). Nano-fertilizers and their smart delivery system Nanotechnologies in food and agriculture (pp. 81-101): Springer.

Subramanian, K., Paulraj, C., & Natarajan, S. (2008). Nanotechnological approaches in nutrient management. Nanotechnology Applications in Agriculture, 61, 37-42.

Subramanian, K., & Rahale, C. S. (2012). Ball milled nanosized zeolite loaded with zinc sulfate: a putative slow release Zn fertilizer. International Journal of Innovative Horticulture, 1(1), 33-40.

Subramanian, K., & Tarafdar, J. (2011). Prospects of nanotechnology in Indian farming. Indian J Agric Sci, 81(10), 887-893.

Subramanian, K. S., Manikandan, A., Thirunavukkarasu, M., & Rahale, C. S. (2015). Nano-fertilizers for balanced crop nutrition Nanotechnologies in food and agriculture (pp. 69-80): Springer.

Sun, Y., Wang, W., Zheng, F., Zhang, S., Wang, F., & Liu, S. (2020). Phytotoxicity of iron-based materials in mung bean: Seed germination tests. Chemosphere, 251, 126432.

Supapron, J., Pitayakon, L., Kamalapa, W., & Touchamon, P. (2002). Effect of zeolite and chemical fertilizer on the change of physical and chemical properties on Lat Ya soil series for sugar cane. Paper presented at the Proceedings of the 17th WCSS Symposium, Aug.

Thakkar, K. N., Mhatre, S. S., & Parikh, R. Y. (2010). Biological synthesis of metallic nanoparticles. Nanomedicine: nanotechnology, biology and medicine, 6(2), 257-262.

Tripathi, D. K., Singh, S., Singh, S., Mishra, S., Chauhan, D., & Dubey, N. (2015). Micronutrients and their diverse role in agricultural crops: advances and future prospective. Acta Physiologiae Plantarum, 37(7), 1-14.

Wang, P., Lombi, E., Zhao, F.-J., & Kopittke, P. M. (2016). Nanotechnology: a new opportunity in plant sciences. Trends in plant science, 21(8), 699-712.

Weng, B.-Q., Huang, D.-F., Xiong, D.-Z., Wang, Y.-X., Luo, T., Ying, Z.-Y., & Wang, H.-P. (2009). Effects of molybdenum application on plant growth, molybdoenzyme activity and mesophyll cell ultrastructure of round leaf cassia in red soil. Journal of Plant Nutrition, 32(11), 1941-1955.

Xiumei, L., Fudao, Z., Shuqing, Z., Xusheng, H., Rufang, W., Zhaobin, F., & Yujun, W. (2005). Responses of peanut to nano-calcium carbonate. Plant Nutrition and Fertitizer Science, 11(3), 385-389.

Yadav, T. P., Yadav, R. M., & Singh, D. P. (2012). Mechanical milling: a top down approach for the synthesis of nanomaterials and nanocomposites. Nanoscience and Nanotechnology, 2(3), 22-48.

Yuvaraj, M., & Subramanian, K. (2019). Nano Zinc Micronutrient Nanoscale Engineering in Agricultural Management (pp. 151-163): CRC Press.

Zhou, J., & Huang, P. (2007). Kinetics of potassium release from illite as influenced by different phosphates. Geoderma, 138(3-4), 221-228.

Zulfiqar, F., Navarro, M., Ashraf, M., Akram, N. A., & Munné-Bosch, S. (2019). Nanofertilizer use for sustainable agriculture: Advantages and limitations. Plant Science, 289, 110270.

Downloads

Published

2023-10-24

How to Cite

REHMAN, H., KAUSAR, R., NAWAZ, S., AKRAM, F., ASIF, M., ALI, S., KAUSAR, S., NADEEM, M., IMRAN, M., & SARWAR, M. (2023). NUTRIENT TRANSFORMATION THROUGH NANOFERTILIZERS IN SOIL. Biological and Clinical Sciences Research Journal, 2023(1), 483. https://doi.org/10.54112/bcsrj.v2023i1.483

Most read articles by the same author(s)

1 2 3 4 > >>