Diagnostic Accuracy of Contrast-Enhanced MRI in Detection of Ovarian Malignant Masses
DOI:
https://doi.org/10.54112/bcsrj.v6i6.1972Keywords:
Ovarian neoplasms; Adnexal mass; Magnetic resonance imaging; Contrast-enhanced MRI; Diagnostic accuracy; Sensitivity and specificity; Receiver operating characteristic (ROC); Histopathology; O-RADS MRI; Diffusion-weighted imaging (DWI)Abstract
Characterizing indeterminate adnexal masses remains a clinical challenge. Contrast-enhanced MRI (CE-MRI) may enhance the discrimination between benign and malignant ovarian lesions, thereby refining surgical triage. Objective: To determine the diagnostic accuracy of CE-MRI for detecting ovarian malignancy using histopathology as the reference standard. Methods: We conducted an observational study over six months, commencing from June 2024 to December 2024, at a tertiary referral center (Department of Radiology, JPMC, Karachi). Consecutive women (≥18 years) with suspected ovarian masses underwent standardized pelvic CE-MRI (multiparametric protocol with dynamic contrast enhancement). Imaging features (size, shape, septations/solid components, enhancement pattern, necrosis) and an overall CE-MRI impression (benign vs malignant) were recorded. All patients proceeded to definitive surgery; histopathology (malignant vs benign, subtype, grade) served as the Gold standard. Diagnostic performance metrics (sensitivity, specificity, PPV, NPV, accuracy) were calculated from 2×2 tables; ROC analysis quantified discrimination. Results: A total of 152 women were included (mean age 47.05 ± 11.28 years; symptom duration 8.69 ± 4.11 weeks). Mean lesion size was 8.54 ± 3.31 cm on baseline imaging and 7.93 ± 3.12 cm on CE-MRI. CE-MRI impressions were malignant in 75 (49.3%) cases; histopathology confirmed malignancy in 73 (48.0%). The 2×2 table yielded 66 true positives, nine false positives, 70 true negatives, and seven false negatives. CE-MRI demonstrated sensitivity 90.4%, specificity 88.6%, PPV 88.0%, NPV 90.9%, and overall accuracy 89.5%. ROC analysis showed strong discrimination (AUC 0.895, p < 0.0001). Conclusion: In a real-world referral cohort, CE-MRI demonstrated high diagnostic accuracy in differentiating malignant from benign ovarian masses, with excellent sensitivity and specificity, and an AUC approaching 0.90. CE-MRI thus provides robust second-line problem-solving after initial imaging and supports informed surgical planning.
Downloads
References
Ferlay J, Ervik M, Lam F, et al. Global Cancer Observatory: Cancer Today—Ovary fact sheet (GLOBOCAN 2022). Lyon: IARC; 2024. Available from: https://gco.iarc.who.int/today (accessed 2025-09-24). [No DOI assigned]
Reinhold C, Rockall A, Sadowski EA, et al. Ovarian-Adnexal Reporting Lexicon for MRI: A White Paper of the ACR O-RADS MRI Committee. J Am Coll Radiol. 2021;18(5):713-729. https://doi.org/10.1016/j.jacr.2020.12.022
Thomassin-Naggara I, Poncelet E, Jalaguier-Coudray A, et al. O-RADS MRI score for risk stratification of sonographically indeterminate adnexal masses. JAMA Netw Open. 2020;3(1):e1919896. https://doi.org/10.1001/jamanetworkopen.2019.19896
Rizzo S, Cozzi A, Dolciami M, et al. O-RADS MRI: Systematic review & meta-analysis of diagnostic performance and category-wise malignancy rates. Radiology. 2023;307(1):e220795. https://doi.org/10.1148/radiol.220795
Kılıçkap G, et al. Diagnostic performance of the O-RADS MRI system: systematic review, meta-analysis, and meta-regression. Diagn Interv Radiol. 2024. https://doi.org/10.4274/dir.2024.242784
Wei M, Bo F, Cao H, et al. Diagnostic performance of DCE-MRI for malignant ovarian tumors: systematic review and meta-analysis. Acta Radiol. 2021;62(7):966-978. https://doi.org/10.1177/0284185120944916
Meng XF, Zhu SC, Sun SJ, Guo JC, Wang X. Diffusion-weighted imaging for differential Diagnosis of benign vs malignant ovarian neoplasms: meta-analysis. Oncol Lett. 2016;11:3795-3802. https://doi.org/10.3892/ol.2016.4445
Zhang Q, Dai X, Li W. Systematic review and meta-analysis of O-RADS US and O-RADS MRI for ovarian/adnexal lesions. AJR Am J Roentgenol. 2023;221(1):21-33. https://doi.org/10.2214/AJR.22.28396
Moradi B, et al. Unenhanced MRI for indeterminate ovarian/adnexal masses: diagnostic accuracy study. Radiol Bras. 2025;58(1): ePub ahead of print. https://doi.org/10.1590/0100-3984.2024.0032
Pereira PN, Yoshida A, Sarian LO, et al. Accuracy of the ADNEX MR scoring system based on a simplified MRI protocol for the assessment of adnexal masses. Diagn Interv Radiol. 2018;24(2):63-71. https://doi.org/10.5152/dir.2018.17378
Hricak H, Chen M, Coakley FV, et al. Complex adnexal masses: detection and characterization with MR imaging—multivariate analysis. Radiology. 2000;214(1):39-46. https://doi.org/10.1148/radiology.214.1.39
Sohaib SAA, Sahdev A, Van Trappen P, Jacobs IJ, Reznek RH. Characterization of adnexal mass lesions on MR imaging. AJR Am J Roentgenol. 2003;180(5):1297-1304. https://doi.org/10.2214/ajr.180.5.1801297
Saini A, Dina R, McIndoe GA, Soutter WP, Gishen P, deSouza NM. Characterization of adnexal masses with MRI. AJR Am J Roentgenol. 2005;184(3):1004-1009. https://doi.org/10.2214/ajr.184.3.01841004
Kinkel K, Lu Y, Mehdizade A, Pelte MF, Hricak H. Indeterminate ovarian mass at US: incremental value of second imaging test for characterization—meta-analysis and Bayesian analysis. Radiology. 2005;236(1):85-94. https://doi.org/10.1148/radiol.2361041618
Taylor EC, Irshaid L, Mathur M. Multimodality imaging approach to ovarian neoplasms: state of the art. RadioGraphics. 2021;41(1):289-315. https://doi.org/10.1148/rg.2021200086
Derlatka P, Walecka A, Walecki J. The value of magnetic resonance diffusion-weighted imaging and dynamic contrast enhancement in the Diagnosis and prognosis of treatment response in patients with epithelial serous ovarian cancer. Cancers (Basel). 2022;14(10):2464. https://doi.org/10.3390/cancers14102464
Manganaro L, Micco M, Fagotti A, et al. Impact of DWI and ADC values in the O-RADS MRI classification for adnexal masses. Radiol Med. 2023;128(5):565-577. https://doi.org/10.1007/s11547-023-01628-3
Van Calster B, Van Hoorde K, Valentin L, et al. Evaluating the risk of ovarian cancer before surgery using the ADNEX model. BMJ. 2014;349:g5920. https://doi.org/10.1136/bmj.g5920
Van Calster B, Wynants L, Timmerman D, et al. Validation of models to diagnose ovarian cancer in patients with adnexal masses. BMJ. 2020;370:m2614. https://doi.org/10.1136/bmj.m2614
Sahin H, Panico C, Pacelli R, et al. Serous borderline ovarian tumours: an extensive review on MR imaging features. Br J Radiol. 2021;94(1125):20210116. https://doi.org/10.1259/bjr.20210116
Torre LA, Trabert B, DeSantis CE, et al. Ovarian cancer statistics, 2018. CA Cancer J Clin. 2018;68(4):284-296. https://doi.org/10.3322/caac.21456
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Piriha Nisar, . Varsha, Abdul Samad, Shaista Shoukat, Sumera Shahbaz, . Sanjana

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.