Identification of Candidate Genes Involved in Causing Pancreatic Cancer Through an Integrated Bioinformatics Approach
DOI:
https://doi.org/10.54112/bcsrj.v6i8.1687Keywords:
Pancreatic Cancer, DEG, GEO2R, KEGG, STRING, Hub genesAbstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy with poor survival, underscoring the need for robust molecular markers that can refine diagnosis and guide therapy. Objective: The goal of this study is to enhance diagnostic and treatment approaches for Pancreatic Ductal Adenocarcinoma (PDAC), a highly aggressive malignancy. We utilized RNA sequencing (RNA-Seq) data to identify differentially expressed genes (DEGs), examine gene networks, and uncover critical molecular links that are involved in the development and progression of PDAC. Methods: Four microarray datasets (GSE15471, GSE16515, GSE62165, and GSE62452) were obtained from the Gene Expression Omnibus (GEO). Data normalization and differential expression analysis were conducted using GEO2R, with a p-value cut-off of < 0.001 to identify DGEs. Functional annotation of these genes was carried out using DAVID Bioinformatics Resources, focusing on KEGG pathways and Gene Ontology (GO) terms. Gene interaction networks were constructed using STRING, and hub genes were identified with the cytoHubba plugin in Cytoscape. Results: A total of 614 up-regulated and 314 down-regulated genes were identified. The functional annotation of these genes revealed notable enrichment in several KEGG pathways and GO categories associated with molecular functions, biological processes, and cellular constituents. Key biological pathways implicated in PDAC were identified by the gene interaction networks derived from the DEGs. The top ten hub genes were identified. Conclusion: This comprehensive analysis of RNA-Seq data from multiple PDAC datasets successfully identified hub genes. These findings provide a molecular foundation for developing novel therapeutic strategies and improved diagnostic markers for the treatment of PDAC.
Downloads
References
Moore A, Donahue T. Pancreatic cancer. Jama. 2019;322(14):1426-.
Kukurba KR, Montgomery SB. RNA sequencing and analysis. Cold Spring Harbor Protocols. 2015;2015(11):pdb. top084970.
Pantlik J. Detection of somatic mutations and mutational signatures in pancreatic cancer using RNA-sequencing data: University of Zagreb. Faculty of Science. Department of Biology; 2023.
Singhi AD, Koay EJ, Chari ST, Maitra A. Early detection of pancreatic cancer: opportunities and challenges. Gastroenterology. 2019;156(7):2024-40.
Li D, Xie K, Wolff R, Abbruzzese JL. Pancreatic cancer. The Lancet. 2004;363(9414):1049-57.
Wei R, Qi G, Zeng Z, Shen N, Wang Z, Shen H, et al. IMUP and GPRC5A: two newly identified risk score indicators in pancreatic ductal adenocarcinoma. Cancer cell international. 2021;21:1-19.
Rong Y, Gao J, Kuang T, Chen J, Li Ja, Huang Y, et al. DIAPH3 promotes pancreatic cancer progression by activating selenoprotein TrxR1‐mediated antioxidant effects. Journal of Cellular and Molecular Medicine. 2021;25(4):2163-75.
Zhang Mx, Wang H, Sun Gp. Tumor‐suppressor Fbxw7 targets SIK2 for degradation to interfere with TORC2‐AKT signaling in pancreatic cancer. Cell Biology International. 2020;44(9):1900-10.
Mizrahi JD, Surana R, Valle JW, Shroff RT. Pancreatic cancer. The Lancet. 2020;395(10242):2008-20.
Kleeff J, Korc M, Apte M, La Vecchia C, Johnson CD, Biankin AV, et al. Pancreatic cancer. Nature reviews Disease primers. 2016;2(1):1-22.
Adamska A, Domenichini A, Falasca M. Pancreatic ductal adenocarcinoma: current and evolving therapies. International journal of molecular sciences. 2017;18(7):1338.
Hidalgo M. Pancreatic cancer. New England Journal of Medicine. 2010;362(17):1605-17.
Fitzpatrick MJ, Ben-Shahar Y, Smid HM, Vet LE, Robinson GE, Sokolowski MB. Candidate genes for behavioural ecology. Trends in Ecology & Evolution. 2005;20(2):96-104.
Forrest AR, Carninci P. Whole genome transcriptome analysis. RNA biology. 2009;6(2):107-12.
Flint J, Munafò MR. Candidate and non-candidate genes in behavior genetics. Current opinion in neurobiology. 2013;23(1):57-61.
Tabor HK, Risch NJ, Myers RM. Candidate-gene approaches for studying complex genetic traits: practical considerations. Nature Reviews Genetics. 2002;3(5):391-7.
Bargsten JW, Nap J-P, Sanchez-Perez GF, van Dijk AD. Prioritization of candidate genes in QTL regions based on associations between traits and biological processes. BMC plant biology. 2014;14:1-12.
Clough E, Barrett T. The gene expression omnibus database. Statistical Genomics: Methods and Protocols. 2016:93-110.
Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature protocols. 2009;4(1):44-57.
Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S, et al. The STRING database in 2021: customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic acids research. 2021;49(D1):D605-D12.
Edgar R, Domrachev M, Lash AE. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002;30(1):207-10.
Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, et al. NCBI GEO: archive for functional genomics data sets—update. Nucleic Acids Research. 2012;41(D1):D991-D5.
Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, et al. Bioconductor: open software development for computational biology and bioinformatics. Genome biology. 2004;5(10):R80.
Smyth G. LIMMA: Linear models for microarray data. ᅟ2005. p. 397-420.
Davis S, Meltzer P. GEOquery: A bridge between the Gene Expression Omnibus (GEO) and BioConductor. Bioinformatics (Oxford, England). 2007;23:1846-7.
Kalpić D, Hlupić N, Lovrić M. Student’s t-Tests. In: Lovric M, editor. International Encyclopedia of Statistical Science. Berlin, Heidelberg: Springer Berlin Heidelberg; 2011. p. 1559-63.
Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society Series B (Methodological). 1995;57(1):289-300.
Anjum A, Jaggi S, Varghese E, Lall S, Bhowmik A, Rai A. Identification of Differentially Expressed Genes in RNA-seq Data of Arabidopsis thaliana: A Compound Distribution Approach. J Comput Biol. 2016;23(4):239-47.
Oliveros JC. VENNY. An interactive tool for comparing lists with Venn Diagrams. 2007.
Dennis G, Jr., Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, et al. DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol. 2003;4(5):P3.
Huang da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature protocols. 2009;4(1):44-57.
Harris MA, Clark J, Ireland A, Lomax J, Ashburner M, Foulger R, et al. The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res. 2004;32(Database issue):D258-61.
Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 2000;25(1):25-9.
Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27-30.
Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic acids research. 2019;47(D1):D607-D13.
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498-504.
Mike Smoot MA, Yassen Assenov. NetworkAnalyzer 2020 [Available from: https://apps.cytoscape.org/apps/networkanalyzer#:~:text=NetworkAnalyzer%20performs%20analysis%20of%20biological,of%20connected%20pairs%20of%20nodes.
Doncheva NT, Morris JH, Gorodkin J, Jensen LJ. Cytoscape StringApp: Network Analysis and Visualization of Proteomics Data. J Proteome Res. 2019;18(2):623-32.
Liu Y, Gu HY, Zhu J, Niu YM, Zhang C, Guo GL. Identification of Hub Genes and Key Pathways Associated With Bipolar Disorder Based on Weighted Gene Co-expression Network Analysis. Front Physiol. 2019;10:1081.
Chin CH, Chen SH, Wu HH, Ho CW, Ko MT, Lin CY. cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst Biol. 2014;8 Suppl 4:S11.
Zhu T, Gao Y-F, Chen Y-X, Wang Z-B, Yin J-Y, Mao X-Y, et al. Genome-scale analysis identifies GJB2 and ERO1LB as prognosis markers in patients with pancreatic cancer. Oncotarget. 2017;8(13):21281.
Alonso-Betanzos A, Bolón-Canedo V, Morán-Fernández L, Sánchez-Maroño N. A review of microarray datasets: where to find them and specific characteristics. Microarray Bioinformatics. 2019:65-85.
Lu W, Li N, Liao F. Identification of key genes and pathways in pancreatic cancer gene expression profile by integrative analysis. Genes. 2019;10(8):612.
Sepulveda JL. Using R and bioconductor in clinical genomics and transcriptomics. The Journal of Molecular Diagnostics. 2020;22(1):3-20.
Oliveros JC. VENNY. An interactive tool for comparing lists with Venn Diagrams. http://bioinfogp cnb csic es/tools/venny/index html. 2007.
Jia A, Xu L, Wang Y. Venn diagrams in bioinformatics. Briefings in bioinformatics. 2021;22(5):bbab108.
Huang DW, Sherman BT, Tan Q, Kir J, Liu D, Bryant D, et al. DAVID Bioinformatics Resources: expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic acids research. 2007;35(suppl_2):W169-W75.
Stormo GD, Hartzell 3rd G. Identifying protein-binding sites from unaligned DNA fragments. Proceedings of the National Academy of Sciences. 1989;86(4):1183-7.
Zhang X, Fu Q, Liu C, Luo Q, Yu P, Bian J, et al. Identification of the Genetic Association Between Ferroptosis and immune in Pancreatic Cancer. 2024.
Chen S-H, Chin C-H, Wu H-H, Ho C-W, Ko M-T, Lin C-Y, editors. cyto-Hubba: A Cytoscape plug-in for hub object analysis in network biology. 20th international conference on genome informatics; 2009: Citeseer.
Grant TJ, Hua K, Singh A. Molecular pathogenesis of pancreatic cancer. Progress in molecular biology and translational science. 2016;144:241-75.
Hong H-J, Shao Y, Zhang S, Yang G, Jia H, Yang X, et al. ACACB is a novel metabolism-related biomarker in the prediction of response to cetuximab therapy inmetastatic colorectal cancer: ACACB is a biomarker for CTX therapy in metastatic CRC. Acta Biochimica et Biophysica Sinica. 2022;54(11):1671.
Liu Z, Jin K, Guo M, Long J, Liu L, Liu C, et al. Prognostic value of the CRP/Alb ratio, a novel inflammation-based score in pancreatic cancer. Annals of surgical oncology. 2017;24:561-8.
Wang X, Song H, Liang J, Jia Y, Zhang Y. Abnormal expression of HADH, an enzyme of fatty acid oxidation, affects tumor development and prognosis. Molecular medicine reports. 2022;26(6):1-8.
Oliveira-Cunha M, Newman WG, Siriwardena AK. Epidermal growth factor receptor in pancreatic cancer. Cancers. 2011;3(2):1513-26.
Xia X, Wu W, Huang C, Cen G, Jiang T, Cao J, et al. SMAD4 and its role in pancreatic cancer. Tumor Biology. 2015;36:111-9.
Yang Y, Gu H, Zhang K, Guo Z, Wang X, Wei Q, et al. Exosomal ACADM sensitizes gemcitabine-resistance through modulating fatty acid metabolism and ferroptosis in pancreatic cancer. BMC cancer. 2023;23(1):789.
Han A, Xu R, Liu Y, Yin X, Lin Z, Yang W. HSDL2 acts as a promoter in pancreatic cancer by regulating cell proliferation and lipid metabolism. OncoTargets and therapy. 2021:435-44.
Patil S, Steuber B, Kopp W, Kari V, Urbach L, Wang X, et al. EZH2 regulates pancreatic cancer subtype identity and tumor progression via transcriptional repression of GATA6. Cancer research. 2020;80(21):4620-32.
Guo C, Liu S, Wang J, Sun M-Z, Greenaway FT. ACTB in cancer. Clinica chimica acta. 2013;417:39-44.
Butera G, Pacchiana R, Mullappilly N, Margiotta M, Bruno S, Conti P, et al. Mutant p53 prevents GAPDH nuclear translocation in pancreatic cancer cells favoring glycolysis and 2-deoxyglucose sensitivity. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research. 2018;1865(12):1914-23.
Gao C-T, Ren J, Yu J, Li S-N, Guo X-F, Zhou Y-Z. KIF23 enhances cell proliferation in pancreatic ductal adenocarcinoma and is a potent therapeutic target. Annals of translational medicine. 2020;8(21).
Furukawa T, Kanai N, Shiwaku H, Soga N, Uehara A, Horii A. AURKA is one of the downstream targets of MAPK1/ERK2 in pancreatic cancer. Oncogene. 2006;25(35):4831-9.
Klimaszewska-Wiśniewska A, Neska-Długosz I, Buchholz K, Durślewicz J, Grzanka D, Kasperska A, et al. Prognostic significance of KIF11 and KIF14 expression in pancreatic adenocarcinoma. Cancers. 2021;13(12):3017.
Wijnen R, Pecoraro C, Carbone D, Fiuji H, Avan A, Peters GJ, et al. Cyclin dependent kinase-1 (CDK-1) inhibition as a novel therapeutic strategy against pancreatic ductal adenocarcinoma (PDAC). Cancers. 2021;13(17):4389.
Dong S, Huang F, Zhang H, Chen Q. Overexpression of BUB1B, CCNA2, CDC20, and CDK1 in tumor tissues predicts poor survival in pancreatic ductal adenocarcinoma. Bioscience reports. 2019;39(2):BSR20182306.
Kong X, Li L, Li Z, Le X, Huang C, Jia Z, et al. Dysregulated expression of FOXM1 isoforms drives progression of pancreatic cancer. Cancer research. 2013;73(13):3987-96.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Atiqa Nawab, Maliha Ghaffar, Saman Zahra, Ayesha Zulifqar, Humaira Amin, Samavia Mustafa, Anam Abbas

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

