ANTIMICROBIAL RESISTANCE IN SALMONELLA ENTERICA SEROVAR TYPHI: UNDERSTANDING THE MECHANISMS AND PATHOGENICITY OF INFECTION” A COMPREHENSIVE REVIEW

Authors

  • A ANWAR Institute of Microbiology, University of Agriculture Faisalabad
  • N AYAZ Institute of Microbiology, University of Agriculture Faisalabad
  • S AHMAD Institute of Microbiology, University of Agriculture Faisalabad
  • . HAFSA Institute of Microbiology, University of Agriculture Faisalabad
  • F NAZ Institute of Microbiology, University of Agriculture Faisalabad
  • K NADIR Institute of Microbiology, University of Agriculture Faisalabad

DOI:

https://doi.org/10.54112/bcsrj.v2024i1.666

Keywords:

Typhoid Fever, Contagious disease, Bloodstream infections, Immune response,Capsular structure,Virulence

Abstract

Typhoid Fever is a contagious disease caused by Salmonella enterica serovar typhi. It is also the cause of bloodstream infections in most of the developing countries. The pathogen can escape from the host’s immune response, a feature linked with the capsular structure of bacteria, which contributes to its virulence and is a crucial factor in the dissemination of infection. Salmonella enterica serovars are classified as typhoidal and nontyphoidal salmonella. In this review, we will discuss the ecumenical occurrence of immune strains of Salmonella enterica. We cover the mechanism of antimicrobial resistance in Salmonella, including plasmid-mediated resistance. Antibiotic resistance can occur through various mechanisms, such as deactivation of antibacterial medications, changes in therapeutic targets, and acquisition of foreign DNA coding for resistance determinants through horizontal gene transfer. Additionally, bacteria can employ different efflux pumps to resist antibiotics. These are some of the common ways in which antibiotic resistance is developed. We will explore the factors contributing to its virulence, such as the improper use of antibiotics, gene transfers, recurrent infections, and reduced host immunity. Proper hygiene practices and accurate treatment are necessary to combat typhoid disease, which can be better understood by studying its pathogenesis and diagnosis. The widal test and Typhidot test are essential for the diagnosis of salmonella. Vaccines are available against typhoid. We can overcome disease development through vaccination by choosing safe delivery methods and control strategies.

Downloads

Download data is not yet available.

References

Ahamed Riyaaz, A. A., Perera, V., Sivakumaran, S., and de Silva, N. J. C. R. i. I. D. (2018). Typhoid fever due to extended-spectrum β-lactamase-producing Salmonella enterica serovar Typhi: A case report and literature review. 2018.

Ajibola, O., Mshelia, M. B., Gulumbe, B. H., and Eze, A. A. J. M. (2018). Typhoid fever diagnosis in endemic countries: a clog in the wheel of progress? 54, 23.

Al‐Gallas, N., Belghouthi, K., Barratt, N. A., Ghedira, K., Hotzel, H., Tomaso, H., El‐Adawy, H., Neubauer, H., Laouini, D., and Zarrouk, S. J. J. o. A. M. (2022). Identification and characterization of multidrug‐resistant ESBL‐producing Salmonella enterica serovars Kentucky and Typhimurium isolated in Tunisia CTX‐M‐61/TEM‐34, a novel cefotaxime‐hydrolysing β‐lactamase of Salmonella. 132, 279-289.

Andualem, G., Abebe, T., Kebede, N., Gebre-Selassie, S., Mihret, A., and Alemayehu, H. J. B. r. n. (2014). A comparative study of Widal test with blood culture in the diagnosis of typhoid fever in febrile patients. 7, 1-6.

Arnold, B. J., Huang, I.-T., and Hanage, W. P. J. N. R. M. (2022). Horizontal gene transfer and adaptive evolution in bacteria. 20, 206-218.

Authority, E. F. S., Prevention, E. C. f. D., and Journal, C. J. E. (2019). The European Union one health 2018 zoonoses report. 17, e05926.

Carattoli, A. J. I. j. o. m. m. (2013). Plasmids and the spread of resistance. 303, 298-304.

Carstens, C. K., Salazar, J. K., and Darkoh, C. J. F. i. m. (2019). Multistate outbreaks of foodborne illness in the United States associated with fresh produce from 2010 to 2017. 10, 2667.

Choudhary, A., Gopalakrishnan, R., Senthur, N. P., Ramasubramanian, V., Ghafur, K. A., and Thirunarayan, M. J. T. I. j. o. m. r. (2013). Antimicrobial susceptibility of Salmonella enterica serovars in a tertiary care hospital in southern India. 137, 800.

Crump, J. A., Luby, S. P., and Mintz, E. D. J. B. o. t. W. H. O. (2004). The global burden of typhoid fever. 82, 346-353.

Date, K. A., Bentsi-Enchill, A., Marks, F., and Fox, K. (2015a). Typhoid fever vaccination strategies. Vaccine 33 Suppl 3, C55-61.

Date, K. A., Bentsi-Enchill, A., Marks, F., and Fox, K. J. V. (2015b). Typhoid fever vaccination strategies. 33, C55-C61.

Deen, J., Von Seidlein, L., Andersen, F., Elle, N., White, N. J., and Lubell, Y. J. T. L. i. d. (2012). Community-acquired bacterial bloodstream infections in developing countries in south and southeast Asia: a systematic review. 12, 480-487.

Dewan, D. K., and Welfare, D. F. (2013). Community based typhoid vaccination program in New Delhi, India. In "8th international conference: typhoid fever and other invasive salmonel-loses".

Feasey, N. A., Dougan, G., Kingsley, R. A., Heyderman, R. S., and Gordon, M. A. J. T. L. (2012). Invasive non-typhoidal salmonella disease: an emerging and neglected tropical disease in Africa. 379, 2489-2499.

Gauld, J. S., Bilima, S., Diggle, P. J., Feasey, N. A., Read, J. M. J. E., and Infection (2022a). Rainfall anomalies and typhoid fever in Blantyre, Malawi. 150.

Gauld, J. S., Olgemoeller, F., Heinz, E., Nkhata, R., Bilima, S., Wailan, A. M., Kennedy, N., Mallewa, J., Gordon, M. A., and Read, J. M. J. C. I. D. (2022b). Spatial and genomic data to characterize endemic typhoid transmission. 74, 1993-2000.

Goodkin, D., and Hertsgaard, D. J. L. (1982). Oral immunisation against typhoid fever in Indonesia with Ty21a vaccine. 2, 351-54.

Guiney, D. G., and Fierer, J. J. F. i. m. (2011). The role of the spv genes in Salmonella pathogenesis. 2, 129.

Gunn, J. S., Marshall, J. M., Baker, S., Dongol, S., Charles, R. C., and Ryan, E. T. J. T. i. m. (2014). Salmonella chronic carriage: epidemiology, diagnosis, and gallbladder persistence. 22, 648-655.

Handel, A., Margolis, E., and Levin, B. R. J. J. o. t. b. (2009). Exploring the role of the immune response in preventing antibiotic resistance. 256, 655-662.

hebdomadaire, W. H. O. J. W. E. R. R. é. (2014). Meeting of the Strategic Advisory Group of Experts on immunization, April 2014—conclusions and recommendations. 89, 221-236.

Hernandez-Juyol, M., and Job-Quesada, J. J. M. o. o. o. d. l. S. E. d. M. O. y. d. l. A. I. d. P. y. M. B. (2002). Dentistry and self-medication: a current challenge. 7, 344-347.

Holmes, A. H., Moore, L. S., Sundsfjord, A., Steinbakk, M., Regmi, S., Karkey, A., Guerin, P. J., and Piddock, L. J. J. T. L. (2016). Understanding the mechanisms and drivers of antimicrobial resistance. 387, 176-187.

Hornick, R., Greisman, S., Woodward, T., DuPont, H., Hawkins, A., and Snyder, M. J. N. E. j. o. m. (1970). Typhoid fever: pathogenesis and immunologic control. 283, 739-746.

House, D., Bishop, A., Parry, C., Dougan, G., and Wain, J. J. C. o. i. i. d. (2001). Typhoid fever: pathogenesis and disease. 14, 573-578.

Islam, K., Sayeed, M. A., Hossen, E., Khanam, F., Charles, R. C., Andrews, J., Ryan, E. T., and Qadri, F. J. P. N. T. D. (2016). Comparison of the performance of the TPTest, Tubex, Typhidot and Widal immunodiagnostic assays and blood cultures in detecting patients with typhoid fever in Bangladesh, including using a Bayesian latent class modeling approach. 10, e0004558.

Ismail, A. J. T. M. j. o. m. s. M. (2000). New advances in the diagnosis of typhoid and detection of typhoid carriers. 7, 3.

Ivanoff, B., Levine, M. M., and Lambert, P. J. B. o. t. W. H. O. (1994). Vaccination against typhoid fever: present status. 72, 957.

John, J., Bavdekar, A., Rongsen-Chandola, T., Dutta, S., and Kang, G. J. B. p. h. (2018). Estimating the incidence of enteric fever in children in India: a multi-site, active fever surveillance of pediatric cohorts. 18, 1-6.

Karkey, A., Thompson, C. N., Tran Vu Thieu, N., Dongol, S., Le Thi Phuong, T., Voong Vinh, P., Arjyal, A., Martin, L. B., Rondini, S., and Farrar, J. J. J. P. n. t. d. (2013). Differential epidemiology of Salmonella Typhi and Paratyphi A in Kathmandu, Nepal: a matched case control investigation in a highly endemic enteric fever setting. 7, e2391.

Kaur, J., and Jain, S. K. (2012). Role of antigens and virulence factors of Salmonella enterica serovar Typhi in its pathogenesis. Microbiological Research 167, 199-210.

Keddy, K. H., Sooka, A., Letsoalo, M. E., Hoyland, G., Chaignat, C. L., Morrissey, A. B., and Crump, J. A. J. B. o. t. W. H. O. (2011). Sensitivity and specificity of typhoid fever rapid antibody tests for laboratory diagnosis at two sub-Saharan African sites. 89, 640-647.

Khan, M., and Shamim, S. (2022). Understanding the Mechanism of Antimicrobial Resistance and Pathogenesis of Salmonella enterica Serovar Typhi. Microorganisms 10.

Kim, C., Latif, I., Neupane, D. P., Lee, G. Y., Kwon, R. S., Batool, A., Ahmed, Q., Qamar, M. U., and Song, J. J. P. O. (2021). The molecular basis of extensively drug-resistant Salmonella Typhi isolates from pediatric septicemia patients. 16, e0257744.

Klemm, E., Shakoor, S., Page, A., Qamar, F., Judge, K., Saeed, D., Wong, V., Dallman, T., Nair, S., and Baker, S. J. A. R. J. R. A. A. A. P. S. (2018a). Emergence of an extensively drug-resistant Salmonella enterica serovar Typhi clone harboring a promiscuous plasmid encoding resistance to fluoroquinolones and third-generation cephalosporins. mBio. 2018; 9 (1): e00105–18.

Klemm, E. J., Shakoor, S., Page, A. J., Qamar, F. N., Judge, K., Saeed, D. K., Wong, V. K., Dallman, T. J., Nair, S., Baker, S., Shaheen, G., Qureshi, S., Yousafzai, M. T., Saleem, M. K., Hasan, Z., Dougan, G., and Hasan, R. (2018b). Emergence of an Extensively Drug-Resistant Salmonella enterica Serovar Typhi Clone Harboring a Promiscuous Plasmid Encoding Resistance to Fluoroquinolones and Third-Generation Cephalosporins. mBio 9.

Levine, M. M., Ferreccio, C., Black, R. E., Tacket, C. O., Germanier, R., and Diseases, C. T. C. J. C. I. (1989). Progress in vaccines against typhoid fever. 11, S552-S567.

Li, Q. J. C. J. o. I. D., and Microbiology, M. (2022). Mechanisms for the Invasion and Dissemination of Salmonella. 2022.

Lobato-Márquez, D., Molina-García, L., Moreno-Cordoba, I., García-del Portillo, F., and Díaz-Orejas, R. J. F. i. m. b. (2016). Stabilization of the virulence plasmid pSLT of Salmonella Typhimurium by three maintenance systems and its evaluation by using a new stability test. 3, 66.

Masuet-Aumatell, C., Atouguia, J. J. T. M., and Disease, I. (2021). Typhoid fever infection–Antibiotic resistance and vaccination strategies: A narrative review. 40, 101946.

McEwen, S. A., and Collignon, P. J. (2018). Antimicrobial Resistance: a One Health Perspective. 6, 10.1128/microbiolspec.arba-0009-2017.

Munita, J. M., and Arias, C. A. (2016). Mechanisms of Antibiotic Resistance. Microbiol Spectr 4.

Murugaiyan, J., Kumar, P. A., Rao, G. S., Iskandar, K., Hawser, S., Hays, J. P., Mohsen, Y., Adukkadukkam, S., Awuah, W. A., Jose, R. A. M., Sylvia, N., Nansubuga, E. P., Tilocca, B., Roncada, P., Roson-Calero, N., Moreno-Morales, J., Amin, R., Kumar, B. K., Kumar, A., Toufik, A.-R., Zaw, T. N., Akinwotu, O. O., Satyaseela, M. P., and van Dongen, M. B. M. (2022). Progress in Alternative Strategies to Combat Antimicrobial Resistance: Focus on Antibiotics. 11, 200.

Nair, S., Patel, V., Hickey, T., Maguire, C., Greig, D. R., Lee, W., Godbole, G., Grant, K., and Chattaway, M. A. J. J. o. c. m. (2019). Real-time PCR assay for differentiation of typhoidal and nontyphoidal Salmonella. 57, 10.1128/jcm. 00167-19.

Odoch, T., Sekse, C., L’Abee-Lund, T. M., Høgberg Hansen, H. C., Kankya, C., Wasteson, Y. J. I. j. o. e. r., and health, p. (2018). Diversity and antimicrobial resistance genotypes in non-typhoidal Salmonella isolates from poultry farms in Uganda. 15, 324.

Olsen, S. J., Pruckler, J., Bibb, W., Thanh, N. T. M., Trinh, T. M., Minh, N. T., Sivapalasingam, S., Gupta, A., Phuong, P. T., and Chinh, N. T. J. J. o. c. m. (2004). Evaluation of rapid diagnostic tests for typhoid fever. 42, 1885-1889.

Parry, C. M., Hein, T. T., Dougan, G., White, N. J., and Farrar, J. J. (2002). Typhoid fever.

Patki, R., Lilani, S., and Lanjewar, D. J. I. J. o. M. (2017). Baseline antibody titre against Salmonella enterica in healthy population of Mumbai, Maharashtra, India. 2017.

Rather, I. A., Kim, B.-C., Bajpai, V. K., and Park, Y.-H. J. S. j. o. b. s. (2017). Self-medication and antibiotic resistance: Crisis, current challenges, and prevention. 24, 808-812.

Rudd, K. E., Johnson, S. C., Agesa, K. M., Shackelford, K. A., Tsoi, D., Kievlan, D. R., Colombara, D. V., Ikuta, K. S., Kissoon, N., and Finfer, S. J. T. L. (2020). Global, regional, and national sepsis incidence and mortality, 1990–2017: analysis for the Global Burden of Disease Study. 395, 200-211.

Saha, S., Islam, M. S., Sajib, M. S. I., Saha, S., Uddin, M. J., Hooda, Y., Hasan, M., Amin, M. R., Hanif, M., and Shahidullah, M. J. C. I. D. (2019). Epidemiology of typhoid and paratyphoid: implications for vaccine policy. 68, S117-S123.

Simanjuntak, C., Totosudirjo, H., Haryanto, P., Suprijanto, E., Paleologo, F., Punjabi, N., Witham, N., Darmowigoto, R., and Hoffman, S. J. T. L. (1991). Oral immunisation against typhoid fever in Indonesia with Ty21a vaccine. 338, 1055-1059.

Steele, A. D., Hay Burgess, D. C., Diaz, Z., Carey, M. E., and Zaidi, A. K. J. C. I. D. (2016). Challenges and opportunities for typhoid fever control: a call for coordinated action. 62, S4-S8.

Sur, D., Barkume, C., Mukhopadhyay, B., Date, K., Ganguly, N. K., and Garrett, D. J. T. J. o. I. D. (2018). A retrospective review of hospital-based data on enteric fever in India, 2014–2015. 218, S206-S213.

Sur, D., Ochiai, R. L., Bhattacharya, S. K., Ganguly, N. K., Ali, M., Manna, B., Dutta, S., Donner, A., Kanungo, S., and Park, J. K. J. N. E. J. o. M. (2009). A cluster-randomized effectiveness trial of Vi typhoid vaccine in India. 361, 335-344.

Tanmoy, A. M., Westeel, E., De Bruyne, K., Goris, J., Rajoharison, A., Sajib, M. S. I., van Belkum, A., Saha, S. K., Komurian-Pradel, F., and Endtz, H. P. (2018). Salmonella enterica Serovar Typhi in Bangladesh: Exploration of Genomic Diversity and Antimicrobial Resistance. mBio 9.

Thiem, V. D., Lin, F.-Y. C., Canh, D. G., Son, N. H., Anh, D. D., Mao, N. D., Chu, C., Hunt, S. W., Robbins, J. B., Schneerson, R. J. C., and Immunology, V. (2011). The Vi conjugate typhoid vaccine is safe, elicits protective levels of IgG anti-Vi, and is compatible with routine infant vaccines. 18, 730-735.

Wijedoru, L., Mallett, S., and Parry, C. M. J. C. D. o. S. R. (2017). Rapid diagnostic tests for typhoid and paratyphoid (enteric) fever.

Yang, J., Acosta, C. J., Si, G.-a., Zeng, J., Li, C.-y., Liang, D.-b., Ochiai, R. L., Page, A.-L., Danovaro-Holliday, M. C., and Zhang, J. J. B. P. H. (2005). A mass vaccination campaign targeting adults and children to prevent typhoid fever in Hechi; expanding the use of Vi polysaccharide vaccine in southeast China: a cluster-randomized trial. 5, 1-9.

Downloads

Published

2024-01-18

How to Cite

ANWAR , A., AYAZ , N., AHMAD , S., HAFSA, ., NAZ , F., & NADIR , K. (2024). ANTIMICROBIAL RESISTANCE IN SALMONELLA ENTERICA SEROVAR TYPHI: UNDERSTANDING THE MECHANISMS AND PATHOGENICITY OF INFECTION” A COMPREHENSIVE REVIEW. Biological and Clinical Sciences Research Journal, 2024(1), 666. https://doi.org/10.54112/bcsrj.v2024i1.666

Most read articles by the same author(s)

1 2 3 4 > >>