DIVERSITY OF β-GLUCURONIDASE AMONG THE MICROBIOME OF HEALTHY INDIVIDUALS AND PCOS PATIENTS

Authors

  • F MUCCEE School of Biochemistry and Biotechnology, University of Punjab, Lahore 52254, Pakistan
  • F RAZZAQ Institute of Molecular Biology and Biotechnology, The University of Lahore, Pakistan
  • R IQBAL Department of Zoology, Government College University Lahore, Pakistan
  • F RAFIQUE Faculty of Allied Health Sciences (FAHS), Superior University, Raiwind Road, Lahore, Pakistan
  • A AMJAD Department of Botany, University of the Punjab, Lahore, Pakistan
  • QUA NASIR Department of Life Sciences, School of Science, University of Management and Technology, Lahore, Pakistan

DOI:

https://doi.org/10.54112/bcsrj.v2023i1.568

Keywords:

Polycystic Ovary Syndrome, β-Glucuronidase, Faecalibacterium, Configuration, Sub-Cellular Localization

Abstract

PCOS is a heterogeneous disorder caused by reproductive and immuno-metabolic abnormalities. It is accompanied by dysbiosis of the human gut microbial community. Bacterial enzyme β-glucuronidase (GUSB) performs deglucuronidation of conjugated estrogen, resulting in abnormal conc. of this hormone in females and PCOS incidence. Present study was initiated to characterize the GUSB enzyme in bacteria associated with the gut of healthy and PCOS individuals. Enzyme sequences from ten bacteria were retrieved from the UniProt database and characterized by CELLO, Protparam, SOPMA, AlphaFold, and HDOCK tools. Analysis revealed the localization of enzymes in periplasm and cytoplasm in most bacteria and, in addition to this, the outer membrane only in B. intestinalis. PCOS-associated enzymes were alkaline, with high thermostability and in-vitro stability compared to healthy gut bacterial enzymes. Secondary (2D) and tertiary (3D) structures were comparable in enzymes of both these groups. The affinity of GUSB was higher for catechin in PCOS-associated bacteria than bacteria found in a healthy gut. Hence, catechin can be an effective ligand for inhibiting the GUSB enzyme in PCOS patients.

Downloads

Download data is not yet available.

References

Awolade, P., Cele, N., Kerru, N., Gummidi, L., Oluwakemi, E., and Singh, P. (2020). Therapeutic significance of β-glucuronidase activity and its inhibitors: A review. European journal of medicinal chemistry 187, 111921.

Babnigg, G., and Joachimiak, A. (2010). Predicting protein crystallization propensity from protein sequence. Journal of structural and functional genomics 11, 71-80.

Beaud, D., Tailliez, P., and Anba-Mondoloni, J. (2005). Genetic characterization of the β-glucuronidase enzyme from a human intestinal bacterium, Ruminococcus gnavus. Microbiology 151, 2323-2330.

Chaudhuri, A. (2023). Polycystic ovary syndrome: Causes, symptoms, pathophysiology, and remedies. Obesity Medicine, 100480.

Cheng, T. C., Chuang, K. H., Roffler, S. R., Cheng, K. W., Leu, Y. L., Chuang, C. H., Huang, C. C., Kao, C. H., Hsieh, Y. C., and Chang, L. S. (2015). Discovery of specific inhibitors for intestinal E. coli β-glucuronidase through in silico virtual screening. The Scientific World Journal 2015.

Chu, W., Han, Q., Xu, J., Wang, J., Sun, Y., Li, W., Chen, Z. J., and Du, Y. (2020). Metagenomic analysis identified microbiome alterations and pathological association between intestinal microbiota and polycystic ovary syndrome. Fertility and Sterility 113, 1286-1298. e4.

Faith, J. J., McNulty, N. P., Rey, F. E., and Gordon, J. I. (2011). Predicting a human gut microbiota’s response to diet in gnotobiotic mice. Science 333, 101-104.

Flores, R., Shi, J., Fuhrman, B., Xu, X., Veenstra, T. D., Gail, M. H., Gajer, P., Ravel, J., and Goedert, J. J. (2012). Fecal microbial determinants of fecal and systemic estrogens and estrogen metabolites: a cross-sectional study. Journal of translational medicine 10, 1-11.

Gamage, D. G., Gunaratne, A., Periyannan, G. R., and Russell, T. G. (2019). Applicability of instability index for in vitro protein stability prediction. Protein and peptide letters 26, 339-347.

Gill, S. R., Pop, M., DeBoy, R. T., Eckburg, P. B., Turnbaugh, P. J., Samuel, B. S., Gordon, J. I., Relman, D. A., Fraser-Liggett, C. M., and Nelson, K. E. (2006). Metagenomic analysis of the human distal gut microbiome. science 312, 1355-1359.

Guo, J., Shao, J., Yang, Y., Niu, X., Liao, J., Zhao, Q., Wang, D., Li, S., and Hu, J. (2022). Gut microbiota in patients with polycystic ovary syndrome: a systematic review. Reproductive Sciences, 1-15.

Huang, J., Su, C., Zhang, X., Dai, R., Jiang, L., Zhang, T., Sun, Y., and Zhu, Z. (2022). Alteration of gut microbiota in polycystic ovary syndrome patients and the correlated clinical parameters: a cross-sectional analysis study from Chinese women.

Khomami, M. B., Tehrani, F. R., Hashemi, S., Farahmand, M., and Azizi, F. (2015). Of PCOS symptoms, hirsutism has the most significant impact on the quality of life of Iranian women. PLoS One 10, e0123608.

Kicińska, A. M., Maksym, R. B., Zabielska-Kaczorowska, M. A., Stachowska, A., and Babińska, A. (2023). Immunological and metabolic causes of infertility in polycystic ovary syndrome. Biomedicines 11, 1567.

Krahulec, J., and Krahulcová, J. (2007). Characterization of the new β-glucuronidase from Streptococcus equi subsp. zooepidemicus. Applied microbiology and biotechnology 74, 1016-1022.

Krahulec, J., Szemes, T., and Krahulcová, J. (2010). Bioinformatics characterization of potential new beta-glucuronidase from Streptococcus equi subsp. zooepidemicus. Molecular biotechnology 44, 232-241.

Liang, Z., Di, N., Li, L., and D., Y. (2021). Gut microbiota alterations reveal potential gut–brain axis changes in polycystic ovary syndrome. Journal of Endocrinological Investigation, 1-11.

Lindheim, L., Bashir, M., Münzker, J., Trummer, C., Zachhuber, V., Leber, B., Horvath, A., Pieber, T. R., Gorkiewicz, G., and Stadlbauer, V. (2017). Alterations in gut microbiome composition and barrier function are associated with reproductive and metabolic defects in women with polycystic ovary syndrome (PCOS): a pilot study. PloS one 12, e0168390.

Liu, R., Zhang, C., Shi, Y., Zhang, F., Li, L., Wang, X., Ling, Y., Fu, H., Dong, W., and Shen, J. (2017). Dysbiosis of gut microbiota associated with clinical parameters in polycystic ovary syndrome. Frontiers in Microbiology 8, 324.

Mroczynska, M., and Libudzisz, Z. (2010). Beta-glucuronidase and beta-glucosidase activity of Lactobacillus and Enterococcus isolated from human feces. Pol J Microbiol 59, 265-269.

Muccee, F., Ghazanfar, S., Ajmal, W., and Al-Zahrani, M. (2022). In-silico characterization of estrogen reactivating β-glucuronidase enzyme in git associated microbiota of normal human and breast cancer patients. Genes 13, 1545.

Pack, S. P., and Yoo, Y. J. (2004). Protein thermostability: structure-based difference of amino acid between thermophilic and mesophilic proteins. Journal of Biotechnology 111, 269-277.

Parker, J., O’Brien, C., and Hawrelak, J. (2022). A narrative review of the role of gastrointestinal dysbiosis in the pathogenesis of polycystic ovary syndrome. Obstetrics & gynecology science 65, 14-28.

Patel, J., Chaudhary, H., Rajput, K., Parekh, B., and Joshi, R. (2023). Assessment of gut microbial β-glucuronidase and β-glucosidase activity in women with polycystic ovary syndrome. Scientific Reports 13, 11967.

Pellock, S. J., Walton, W. G., Ervin, S. M., Torres-Rivera, D., Creekmore, B. C., Bergan, G., Dunn, Z. D., Li, B., Tripathy, A., and Redinbo, M. R. (2019). Discovery and characterization of FMN-binding β-glucuronidases in the human gut microbiome. Journal of molecular biology 431, 970-980.

Qi, X., Yun, C., Sun, L., Xia, J., Wu, Q., Wang, Y., Wang, L., Zhang, Y., Liang, X., and Wang, L. (2019). Gut microbiota–bile acid–interleukin-22 axis orchestrates polycystic ovary syndrome. Nature medicine 25, 1225-1233.

Righetti, P. G. (2004). Determination of the isoelectric point of proteins by capillary isoelectric focusing. Journal of chromatography A 1037, 491-499.

Rueb, A. M., Tsakmaklis, A., Gräfe, S. K., Simon, M. C., Vehreschild, M. J. G. T., and Wuethrich, I. (2021). Biomarkers of human gut microbiota diversity and dysbiosis. Biomarkers in Medicine 15, 139-150.

Sasaki, T. (2005). The map-based sequence of the rice genome. Nature 436, 793-800.

Siddiqui, R., Makhlouf, Z., Alharbi, A. M., Alfahemi, H., and Khan, N. A. (2022). The gut microbiome and female health. Biology 11, 1683.

Thackray, V. G. (2019). Sex, microbes, and polycystic ovary syndrome. Trends in Endocrinology & Metabolism 30, 54-65.

Wei, B., Wang, P. P., Yan, Z. X., and Yan, R. (2018). Characteristics and molecular determinants of a highly selective and efficient glycyrrhizin-hydrolyzing β-glucuronidase from Staphylococcus pasteuri 3I10. Applied microbiology and biotechnology 102, 9193-9205.

Zehra, B., and Khursheed, A. A. (2018). Polycystic ovarian syndrome: symptoms, treatment and diagnosis: a review. Journal of Pharmacognosy and Phytochemistry 7, 875-880.

Zhang, J., Sun, Z., Jiang, S., Bai, X., Ma, C., Peng, Q., Chen, K., Chang, H., Fang, T., and Zhang, H. (2019). Probiotic Bifidobacterium lactis V9 regulates the secretion of sex hormones in polycystic ovary syndrome patients through the gut-brain axis. Msystems 4, 10.1128/msystems. 00017-19.

Zhao, X., Jiang, Y., Xi, H., Chen, L., and Feng, X. (2020). Exploration of the relationship between gut microbiota and polycystic ovary syndrome (PCOS): a review. Geburtshilfe und Frauenheilkunde 80, 161-171.

Downloads

Published

2023-12-26

How to Cite

MUCCEE , F., RAZZAQ , F., IQBAL , R., RAFIQUE , F., AMJAD , A., & NASIR , Q. (2023). DIVERSITY OF β-GLUCURONIDASE AMONG THE MICROBIOME OF HEALTHY INDIVIDUALS AND PCOS PATIENTS. Biological and Clinical Sciences Research Journal, 2023(1), 568. https://doi.org/10.54112/bcsrj.v2023i1.568