ANTIMICROBIAL SENSITIVITY PATTERN OF PEDIATRIC CYSTIC FIBROSIS PATIENTS IN PAKISTAN
DOI:
https://doi.org/10.54112/bcsrj.v2023i1.492Keywords:
Antimicrobial sensitivity, Pediatric cystic fibrosis, Microbial prevalence, Respiratory infectionsAbstract
Cystic fibrosis (CF) is a complex genetic disorder affecting the respiratory and digestive systems, causing recurrent infections. This study aimed to evaluate the microbiological cultures and identify the patterns of antimicrobial sensitivity among young CF patients in Pakistan. This prospective observational study was conducted at the Pakistan Institute of Medical Sciences (PIMS) from December 2021 to November 2022, involving comprehensive assessments, interviews, clinical tests, MTs, CBCs, CXRs, sputum cultures, RBS measurements, microbiological analysis of sputum and oropharyngeal swabs, antimicrobial susceptibility testing, and statistical analyses (p ≤ 0.05) using SPSS for both continuous and categorized data. Pseudomonas Aeruginosa was the most common respiratory pathogen (n=21; 36%), and most CF-afflicted children (n=46; 77.96%) had infections with a single microorganism. Significant associations (p < 0.05) were observed between Streptococcus pneumoniae, Klebsiella Pneumoniae, Staphylococcus Aureus, and Acinetobacter with their antibiotic sensitivity patterns. In contrast, Pseudomonas Aeruginosa and Escherichia Coli showed no statistically significant associations. Ciprofloxacin demonstrated high sensitivity, followed by Levofloxacin, while several first-generation antibiotics, including rifampicin, erythromycin, and amoxicillin, exhibited nearly complete resistance against bacteria collected from children with CF. Ciprofloxacin and Levofloxacin emerge as the foremost effective therapeutic agents for CF patients, advocating the perpetual promotion of active surveillance to monitor resistance patterns.
Downloads
References
Almughem, F. A., Aldossary, A. M., Tawfik, E. A., Alomary, M. N., Alharbi, W. S., Alshahrani, M. Y., and Alshehri, A. A. (2020). Cystic fibrosis: overview of the current development trends and innovative therapeutic strategies. Pharmaceutics 12, 616.
Aziz, D. A., Billoo, A. G., Qureshi, A., Khalid, M., and Kirmani, S. (2017). Clinical and laboratory profile of children with Cystic Fibrosis: Experience of a tertiary care center in Pakistan. Pakistan journal of medical sciences 33, 554.
Bhinder, M. A., Sadia, H., Mahmood, N., Qasim, M., Hussain, Z., Rashid, M. M., Zahoor, M. Y., Bhatti, R., Shehzad, W., and Waryah, A. M. (2019). Consanguinity: A blessing or menace at population level? Annals of Human Genetics 83, 214-219.
Carroll, M., Rangaiahagari, A., Musabeyezu, E., Singer, D., and Ogbuagu, O. (2016). Five-year antimicrobial susceptibility trends among bacterial isolates from a tertiary health-care facility in Kigali, Rwanda. The American journal of tropical medicine and hygiene 95, 1277.
Chang, R. Y. K., Das, T., Manos, J., Kutter, E., Morales, S., and Chan, H.-K. (2019). Bacteriophage PEV20 and ciprofloxacin combination treatment enhances removal of Pseudomonas aeruginosa biofilm isolated from cystic fibrosis and wound patients. The AAPS journal 21, 1-8.
Che Hamzah, A. M., Yeo, C. C., Puah, S. M., Chua, K. H., and Chew, C. H. (2019). Staphylococcus aureus infections in Malaysia: A review of antimicrobial resistance and characteristics of the clinical isolates, 1990–2017. Antibiotics 8, 128.
Dhooghe, B., Noël, S., Bouzin, C., Behets-Wydemans, G., and Leal, T. (2013). Correction of chloride transport and mislocalization of CFTR protein by vardenafil in the gastrointestinal tract of cystic fibrosis mice. PLoS One 8, e77314.
Florescu, L., Paduraru, D. T. A., MANDRU, D. E., Temneanu, O. R., Petrariu, F., and Matei, M. C. (2014). Epidemiological evaluation regarding the role of cystic fibrosis as a risk factor for child malnutrition. The Medical-Surgical Journal 118, 450-456.
Gbian, D. L., and Omri, A. (2021). Current and novel therapeutic strategies for the management of cystic fibrosis. Expert opinion on drug delivery 18, 535-552.
Junkins, R. D., McCormick, C., and Lin, T.-J. (2014). The emerging potential of autophagy-based therapies in the treatment of cystic fibrosis lung infections. Autophagy 10, 538-547.
Kabir, A. L., Roy, S., Habib, R. B., Anwar, K. S., Mollah, M. A. H., Amin, R., Mridha, A. A., Majumder, J. U., Hossain, M. D., and Haque, N. (2020). Cystic fibrosis diagnosed using indigenously wrapped sweating technique: first large-scale study reporting socio-demographic, clinical, and laboratory features among the children in Bangladesh a lower middle income country. Global pediatric health 7, 2333794X20967585.
Klinger-Strobel, M., Lautenschläger, C., Fischer, D., Mainz, J. G., Bruns, T., Tuchscherr, L., Pletz, M. W., and Makarewicz, O. (2015). Aspects of pulmonary drug delivery strategies for infections in cystic fibrosis–where do we stand? Expert opinion on drug delivery 12, 1351-1374.
Manik, R. K., Jain, D., and Joshi, A. (2023). Effect of Naturopathy and Ayurveda on Cystic Fibrosis: Detailed Review analysis. Journal of Survey in Fisheries Sciences 10, 4214-4230.
Martínez-Alemán, S. R., Campos-García, L., Palma-Nicolas, J. P., Hernández-Bello, R., González, G. M., and Sánchez-González, A. (2017). Understanding the entanglement: neutrophil extracellular traps (NETs) in cystic fibrosis. Frontiers in cellular and infection microbiology 7, 104.
Nobandegani, N. M., Mahmoudi, S., Pourakbari, B., Sadeghi, R. H., Sani, M. N., Farahmand, F., Motamed, F., Rafsanjani, R. N., and Mamishi, S. (2016). Antimicrobial susceptibility of microorganisms isolated from sputum culture of patients with cystic fibrosis: Methicillin-resistant Staphylococcus aureus as a serious concern. Microbial pathogenesis 100, 201-204.
Okeke, I. N., Laxminarayan, R., Bhutta, Z. A., Duse, A. G., Jenkins, P., O'Brien, T. F., Pablos-Mendez, A., and Klugman, K. P. (2005). Antimicrobial resistance in developing countries. Part I: recent trends and current status. The Lancet infectious diseases 5, 481-493.
Redondo, M., Keyt, H., Dhar, R., and Chalmers, J. D. (2016). Global impact of bronchiectasis and cystic fibrosis. Breathe 12, 222-235.
Reece, E., Segurado, R., Jackson, A., McClean, S., Renwick, J., and Greally, P. (2017). Co-colonisation with Aspergillus fumigatus and Pseudomonas aeruginosa is associated with poorer health in cystic fibrosis patients: an Irish registry analysis. BMC pulmonary medicine 17, 1-8.
Valenza, G., Tappe, D., Turnwald, D., Frosch, M., König, C., Hebestreit, H., and Abele-Horn, M. (2008). Prevalence and antimicrobial susceptibility of microorganisms isolated from sputa of patients with cystic fibrosis. Journal of Cystic Fibrosis 7, 123-127.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 G ULLAH , F AHSAN , S FARRUKH , MA QAISRANI , M YASIN , M AKHTAR
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.