A REVIEW: EXPLORING GENETIC VARIATION AND REGULATORY NETWORKS IN WHEAT HEAT STRESS TOLERANCE

Authors

  • I ULLAH Department of Plant Breeding and Genetics, MNS-University of Agriculture Multan Pakistan
  • HN MAJEED Department of Botany, University of Agriculture Faisalabad, Pakistan
  • R BATOOL Department of Plant Sciences, Quaid-i-Azam University Islamabad, Pakistan
  • S FAROOQ Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan
  • R GULAB Department of Botany, University of Peshawar, Pakistan
  • SU HABIBA Department of Biotechnology, University of Karachi Pakistan

DOI:

https://doi.org/10.54112/bcsrj.v2024i1.1342

Keywords:

CRISPR/Cas9 gene editing, Genome-wide association studies (GWAS), Heat stress, Omics approaches, Wheat resilience

Abstract

Wheat (Triticum aestivum L.) is a staple crop vital to global food security, yet rising global temperatures increasingly threaten its productivity. Heat stress (HS), particularly during critical growth phases like anthesis, disrupts physiological and biochemical processes, reducing yields and grain quality. This review explores the genetic variation and regulatory mechanisms that underpin wheat’s resilience to heat stress. Advanced breeding techniques, such as genome-wide association studies (GWAS), quantitative trait loci (QTL) mapping, and next-generation sequencing, have identified key genetic factors contributing to heat tolerance. Novel biotechnological strategies, including CRISPR/Cas9 gene editing, have shown promise in introducing heat-tolerant traits by targeting specific genes. Additionally, omics approaches encompassing transcriptomics, proteomics, and metabolomics offer deeper insights into stress-responsive pathways. With machine learning and artificial intelligence integration, wheat breeding is poised to become more efficient, accelerating the development of cultivars capable of withstanding heat stress. These advancements are essential to ensure sustainable wheat production amidst the challenges of climate change.

Downloads

Download data is not yet available.

References

Ahlawat, O., Yadav, D., Kashyap, P., Khippal, A., & Singh, G. (2022). Wheat endophytes and their potential role in managing abiotic stress under changing climate. Journal of Applied Microbiology, 132(4), 2501-2520. https://doi.org/10.1111/jam.15375.

Aloisi, I. (2023). Editorial: exploiting wheat biodiversity and agricultural practices for tackling the effects of climate change. Frontiers in Plant Science, 14. https://doi.org/10.3389/fpls.2023.1257502.

Arriagada, O., Gadaleta, Á., Marcotuli, I., Maccaferri, M., Campana, M., Reveco, S., … & Schwember, A. (2022). A comprehensive meta-qtl analysis for yield-related traits of durum wheat (triticum turgidum l. var. durum) grown under different water regimes. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.984269.

Ghorbel, M., Feki, K., Tounsi, S., Bouali, N., Besbes, M., & Brini, F. (2022). The putative auto-inhibitory domain of durum wheat catalase (tdcat1) positively regulates bacteria cells in response to different stress conditions. Antioxidants, 11(9), 1820. https://doi.org/10.3390/antiox11091820.

Ghorbel, M., Feki, K., Tounsi, S., Haddaji, N., Hanin, M., & Brini, F. (2022). The activity of the durum wheat (triticum durum l.) catalase 1 (tdcat1) is modulated by calmodulin. Antioxidants, 11(8), 1483. https://doi.org/10.3390/antiox11081483.

Guo, F., Islam, A., Lv, C., Jin, X., Sun, L., Zhao, K., … & Sun, D. (2023). Insights into the bioinformatics and transcriptional analysis of the elongator complexes (elps) gene family of wheat: taelps contribute to wheat abiotic stress tolerance and leaf senescence. Plants, 12(4), 952. https://doi.org/10.3390/plants12040952.

Guo, J., Yang, Y., Wang, T., Wang, Y., Zhang, X., Min, D., … & Zhang, X. (2023). Analysis of raffinose synthase gene family in bread wheat and identification of drought resistance and salt tolerance function of tars15-3b. International Journal of Molecular Sciences, 24(13), 11185. https://doi.org/10.3390/ijms241311185.

Liu, Y., Chen, W., Liu, L., Su, Y., Li, Y., Jia, W., … & Zhou, S. (2022). Genome-wide identification and expression analysis of calmodulin and calmodulin-like genes in wheat (triticum aestivum l.). Plant Signaling & Behavior, 17(1). https://doi.org/10.1080/15592324.2021.2013646.

Lv, Y., Pan, J., Wang, H., Reíter, R., Li, X., Mou, Z., … & Yu, D. (2021). Melatonin inhibits seed germination by crosstalk with abscisic acid, gibberellin, and auxin in arabidopsis. Journal of Pineal Research, 70(4). https://doi.org/10.1111/jpi.12736

Mishra, S. (2023). Genome-wide identification and expression analysis of the gras gene family under abiotic stresses in wheat (triticum aestivum l.). Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-45051-0.

Mustafa, N., Raja, N., Ilyas, N., Abasi, F., Ahmad, M., Ehsan, M., … & Proćków, J. (2022). Exogenous application of green titanium dioxide nanoparticles (tio2 nps) to improve the germination, physiochemical, and yield parameters of wheat plants under salinity stress. Molecules, 27(15), 4884. https://doi.org/10.3390/molecules27154884.

Qiu, D., Hu, W., Zhou, Y., Xiao, J., Hu, R., Wei, Q., … & He, G. (2021). Taasr1‐d confers abiotic stress resistance by affecting ros accumulation and aba signalling in transgenic wheat. Plant Biotechnology Journal, 19(8), 1588-1601. https://doi.org/10.1111/pbi.13572.

Raza, A., Su, W., Gao, A., Mehmood, S., Hussain, M., Wen-long, N., … & Zhang, X. (2021). Catalase (cat) gene family in rapeseed (brassica napus l.): genome-wide analysis, identification, and expression pattern in response to multiple hormones and abiotic stress conditions. International Journal of Molecular Sciences, 22(8), 4281. https://doi.org/10.3390/ijms22084281.

Su, W., Yang, M., Ma, R., Li, Q., Xu, H., Xue, F., … & RenHai, W. (2023). Adaptability and germination characteristics of volunteer wheat in china’s main wheat-producing areas. Biology, 12(8), 1090. https://doi.org/10.3390/biology12081090.

Tao, R., Ding, J., Li, C., Zhu, X., Guo, W., & Zhu, M. (2021). Evaluating and screening of agro-physiological indices for salinity stress tolerance in wheat at the seedling stage. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.646175.

Wang, J., Lv, P., Yan, D., Zhang, Z., Xu, X., Wang, T., … & Li, R. (2022). Exogenous melatonin improves seed germination of wheat (triticum aestivum l.) under salt stress. International Journal of Molecular Sciences, 23(15), 8436. https://doi.org/10.3390/ijms23158436.

Wang, L., Yang, X., Gao, Y., & Yang, S. (2021). Genome-wide identification and characterization of tale superfamily genes in soybean (glycine max l.). International Journal of Molecular Sciences, 22(8), 4117. https://doi.org/10.3390/ijms22084117.

Wang, X. and Chang, C. (2022). Exploring and exploiting cuticle biosynthesis for abiotic and biotic stress tolerance in wheat and barley. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.1064390.

Yadav, I., Rawat, N., Chhuneja, P., Kaur, S., Uauy, C., Lazo, G., … & Tiwari, V. (2023). Comparative genomic analysis of 5mg chromosome of aegilops geniculata and 5uu chromosome of aegilops umbellulata reveal genic diversity in the tertiary gene pool. Frontiers in Plant Science, 14. https://doi.org/10.3389/fpls.2023.1144000.

Krishna, V. (2023). Genetic variability and association studies in germplasm accessions and land races of wheat (triticum aestivum l.). International Journal of Environment and Climate Change, 13(12), 1280-1291. https://doi.org/10.9734/ijecc/2023/v13i123793.

Mitura, K., Cacak-Pietrzak, G., Feledyn-Szewczyk, B., Szablewski, T., & Studnicki, M. (2023). Yield and grain quality of common wheat (triticum aestivum l.) depending on the different farming systems (organic vs. integrated vs. conventional). Plants, 12(5), 1022. https://doi.org/10.3390/plants12051022.

Sousa, T., Ribeiro, M., Sabença, C., & Igrejas, G. (2021). The 10,000-year success story of wheat!. Foods, 10(9), 2124. https://doi.org/10.3390/foods10092124.

Szerement, J., Szatanik-Kloc, A., Mokrzycki, J., & Mierzwa–Hersztek, M. (2021). Agronomic biofortification with se, zn, and fe: an effective strategy to enhance crop nutritional quality and stress defense—a review. Journal of Soil Science and Plant Nutrition, 22(1), 1129-1159. https://doi.org/10.1007/s42729-021-00719-2.

Vassileva, V. (2023). Exploring the genotype-dependent toolbox of wheat under drought stress. Agriculture, 13(9), 1823. https://doi.org/10.3390/agriculture13091823.

Zhu, H. (2023). Enhancing resistance to salinity in wheat by using streptomyces sp. hu2014. Agronomy, 14(1), 39. https://doi.org/10.3390/agronomy14010039.

Шаманин, В., Tekin-Çakmak, Z., Gordeeva, E., Karasu, S., Pototskaya, I., Чурсин, А., … & Köksel, H. (2022). Antioxidant capacity and profiles of phenolic acids in various genotypes of purple wheat. Foods, 11(16), 2515. https://doi.org/10.3390/foods11162515.

Ermini, L. (2024). The application of long-read sequencing to cancer. Cancers, 16(7), 1275. https://doi.org/10.3390/cancers16071275.

Gupta, P. (2024). Advances in single-cell long-read sequencing technologies. Nar Genomics and Bioinformatics, 6(2). https://doi.org/10.1093/nargab/lqae047.

Handy, M., Sbardellati, D., Yu, M., Saleh, N., Ostwald, M., & Vannette, R. (2022). Incipiently social carpenter bees (xylocopa) host distinctive gut bacterial communities and display geographical structure as revealed by full‐length pacbio 16s rrna sequencing. Molecular Ecology, 32(6), 1530-1543. https://doi.org/10.1111/mec.16736.

Hoyer, L. (2024). Use of a candida albicans sc5314 pacbio hifi reads dataset to close gaps in the reference genome assembly, reveal a subtelomeric gene family, and produce accurate phased allelic sequences. Frontiers in Cellular and Infection Microbiology, 14. https://doi.org/10.3389/fcimb.2024.1329438.

Lee, H., Kim, J., & Lee, J. (2023). Benchmarking datasets for assembly-based variant calling using high-fidelity long reads. BMC Genomics, 24(1). https://doi.org/10.1186/s12864-023-09255-y.

Matsuo, Y., Komiya, S., Yasumizu, Y., Yasuoka, Y., Mizushima, K., Takagi, T., … & Hirota, K. (2021). Full-length 16s rrna gene amplicon analysis of human gut microbiota using minion™ nanopore sequencing confers species-level resolution. BMC Microbiology, 21(1). https://doi.org/10.1186/s12866-021-02094-5.

Wei, L., Cheong, I., Yang, G., Li, X., Kozlakidis, Z., Liu, D., … & Wang, H. (2021). The application of high-throughput technologies for the study of microbiome and cancer. Frontiers in Genetics, 12. https://doi.org/10.3389/fgene.2021.699793.

Wensel, C., Pluznick, J., Salzberg, S., & Sears, C. (2022). Next-generation sequencing: insights to advance clinical investigations of the microbiome. Journal of Clinical Investigation, 132(7). https://doi.org/10.1172/jci154944.

Balla, K., Karsaï, I., Kiss, T., Horváth, A., Berki, Z., Cseh, A., … & Veisz, O. (2021). Single versus repeated heat stress in wheat: what are the consequences in different developmental phases?. Plos One, 16(5), e0252070. https://doi.org/10.1371/journal.pone.0252070.

Cao, J. (2024). Natural variation of stkc_gsk3 kinase tasg-d1 contributes to heat stress tolerance in indian dwarf wheat. Nature Communications, 15(1). https://doi.org/10.1038/s41467-024-46419-0.

Kalaipandian, S., Powell, J., Karunakaran, A., Stiller, J., Adkins, S., Kage, U., … & Fleury, D. (2023). Transcriptome analysis of heat shock factor c2a over-expressing wheat roots reveals ferroptosis-like cell death in heat stress recovery. International Journal of Molecular Sciences, 24(4), 3099. https://doi.org/10.3390/ijms24043099.

Mahdavi, S., Arzani, A., Maibody, S., & Kadivar, M. (2022). Grain and flour quality of wheat genotypes grown under heat stress. Saudi Journal of Biological Sciences, 29(10), 103417. https://doi.org/10.1016/j.sjbs.2022.103417.

Tabassum, R., Hasan, A., Rahimi, M., Katsube-Tanaka, T., & Monshi, F. (2023). Heat stress-induced changes in physiological and some biochemical traits of wheat (triticum aestivum l.) genotypes.. https://doi.org/10.21203/rs.3.rs-2864086/v1.

Du, L., Ma, Z., & Mao, H. (2023). Duplicate genes contribute to variability in abiotic stress resistance in allopolyploid wheat. *Plants*, 12(2465). https://doi.org/10.3390/plants12012465.

El-Esawi, M.A., Al-Ghamdi, A.A., Ali, H.M., & Ahmad, M. (2019). Overexpression of AtWRKY30 transcription factor enhances heat and drought stress tolerance in wheat (*Triticum aestivum* L.). *Genes*, 10(163). https://doi.org/10.3390/genes10020163.

Feng, X., Yu, Q., Zeng, J., He, X., & Liu, W. (2022). Genome-wide identification and characterization of GATA family genes in wheat. *BMC Plant Biology*, 22(372). https://doi.org/10.1186/s12870-022-03772-1.

Fu, C., Zhou, Y., Liu, A., Chen, R., Yin, L., Li, C., & Mao, H. (2024). Genome-wide association study for seedling heat tolerance under two temperature conditions in bread wheat (*Triticum aestivum* L.). *BMC Plant Biology*, 24(430). https://doi.org/10.1186/s12870-024-04160-7.

Guérin, C., Dupuits, C., Mouzeyar, S., & Roche, J. (2022). Insights into four NAC transcription factors involved in grain development and in response to moderate heat in the Triticeae tribe. *International Journal of Molecular Sciences*, 23(11672). https://doi.org/10.3390/ijms231911672.

Guo, M., Liu, J.-H., Ma, X., Luo, D.-X., Gong, Z.-H., & Lu, M.-H. (2016). The plant heat stress transcription factors (HSFs): structure, regulation, and function in response to abiotic stresses. *Frontiers in Plant Science*, 7(114). https://doi.org/10.3389/fpls.2016.00114.

Guo, X.-L., Yuan, S.-N., Zhang, H.-N., Zhang, Y.-Y., Zhang, Y.-J., Wang, G.-Y., Li, Y.-Q., & Li, G.-L. (2020). Heat-response patterns of the heat shock transcription factor family in advanced development stages of wheat (*Triticum aestivum* L.) and thermotolerance regulation by TaHsfA2–10. *BMC Plant Biology*, 20(1), 1-18. https://doi.org/10.1186/s12870-020-02444-5.

Haider, S., Iqbal, J., Naseer, S., Shaukat, M., Abbasi, B.A., Yaseen, T., Zahra, S.A., & Mahmood, T. (2022a). Unfolding molecular switches in plant heat stress resistance: A comprehensive review. *Plant Cell Reports*, 41(775-798). https://doi.org/10.1007/s00299-022-02936-7.

Haider, S., Raza, A., Iqbal, J., Shaukat, M., & Mahmood, T. (2022b). Analyzing the regulatory role of heat shock transcription factors in plant heat stress tolerance: a brief appraisal. *Molecular Biology Reports*, 49(5771-5785). https://doi.org/10.1007/s11033-022-07596-9.

Huang, L.-Z., Zhou, M., Ding, Y.-F., & Zhu, C. (2022). Gene networks involved in plant heat stress response and tolerance. *International Journal of Molecular Sciences*, 23(11970). https://doi.org/10.3390/ijms23111970.

Kaur, R., Sinha, K., & Bhunia, R.K. (2019). Can wheat survive in heat? Assembling tools towards successful development of heat stress tolerance in *Triticum aestivum* L. *Molecular Biology Reports*, 46(2577-2593). https://doi.org/10.1007/s11033-019-04705-2.

Lal, M.K., Tiwari, R.K., Gahlaut, V., Mangal, V., Kumar, A., Singh, M.P., Paul, V., Kumar, S., Singh, B., & Zinta, G. (2021). Physiological and molecular insights on wheat responses to heat stress. *Plant Cell Reports*, 1-18. https://doi.org/10.1007/s00299-021-02890-2.

Li, C., Zhao, A., Yu, Y., Cui, C., Zeng, Q., Shen, W., Zhao, Y., Wang, F., Dong, J., & Gao, X. (2023). Exploring the role of TaPLC1-2B in heat tolerance at seedling and adult stages of wheat through transcriptome analysis. *International Journal of Molecular Sciences*, 24(16583). https://doi.org/10.3390/ijms242416583.

Li, G., Liu, Z., Zhang, H., Zhao, B., Zhang, Y., Ma, Z., Duan, S., Meng, X., & Guo, X. (2024). Molecular characterization of a novel heat shock transcription factor gene TaHsfA2-11 and its overexpression improves thermotolerance in wheat. *Environmental and Experimental Botany*, 218(105609). https://doi.org/10.1016/j.envexpbot.2024.105609.

Li, Y., Sun, A., Wu, Q., Zou, X., Chen, F., Cai, R., Xie, H., Zhang, M., & Guo, X. (2021). Comprehensive genomic survey, structural classification, and expression analysis of C. *Molecular Biology Reports*, 48(1-15). https://doi.org/10.1007/s11033-021-06368-2.

Magar, M.M., Liu, H., & Yan, G. (2022). Genome-wide analysis of AP2/ERF superfamily genes in contrasting wheat genotypes reveals heat stress-related candidate genes. *Frontiers in Plant Science*, 13(853086). https://doi.org/10.3389/fpls.2022.853086.

Meena, S., Samtani, H., & Khurana, P. (2022). Elucidating the functional role of heat stress transcription factor A6b (Ta HsfA6b) in linking heat stress response and the unfolded protein response in wheat. *Plant Molecular Biology*, 108(621-634). https://doi.org/10.1007/s11103-022-01254-6.

Osipova, S., Ostrovskaya, R., & Tret’yakova, A. (2022). Genetic aspects of drought resistance in polyploid plants by the example of wheat *Triticum aestivum* L. *Russian Journal of Plant Physiology*, 69(44). https://doi.org/10.1134/S1021443722010045.

Poudel, P.B., & Poudel, M.R. (2020). Heat stress effects and tolerance in wheat: A review. *Journal of Biology Today’s World*, 9(1-6). https://doi.org/10.15412/J.JBTW.02090101.

Rangan, P., Furtado, A., & Henry, R. (2020). Transcriptome profiling of wheat genotypes under heat stress during grain-filling. *Journal of Cereal Science*, 91(102895). https://doi.org/10.1016/j.jcs.2020.102895.

Sharma, M., Sidhu, A.K., Samota, M.K., Gupta, M., Koli, P., & Choudhary, M. (2023). Post-translational modifications in histones and their role in abiotic stress tolerance in plants. *Proteomes*, 11(38). https://doi.org/10.3390/proteomes11010038.

Sun, L., Wen, J., Peng, H., Yao, Y., Hu, Z., Ni, Z., Sun, Q., & Xin, M. (2022). The genetic and molecular basis for improving heat stress tolerance in wheat. *Abiotech*, 3(25-39). https://doi.org/10.3390/abiotech3010003.

Tian, X., Wang, F., Zhao, Y., Lan, T., Yu, K., Zhang, L., Qin, Z., Hu, Z., Yao, Y., & Ni, Z. (2020). Heat shock transcription factor A1b regulates heat tolerance in wheat and Arabidopsis through OPR3 and jasmonate signalling pathway. *Plant Biotechnology Journal*, 18(1109). https://doi.org/10.1111/pbi.13219.

Trono, D., & Pecchioni, N. (2022). Candidate genes associated with abiotic stress response in plants as tools to engineer tolerance to drought, salinity, and extreme temperatures in wheat: An overview. *Plants*, 11(3358). https://doi.org/10.3390/plants11243358.

Wang, H., Feng, M., Jiang, Y., Du, D., Dong, C., Zhang, Z., Wang, W., Liu, J., Liu, X., & Li, S. (2023). Thermosensitive SUMOylation of TaHsfA1 defines a dynamic ON/OFF molecular switch for the heat stress response in wheat. *The Plant Cell*, 35(3889-3910). https://doi.org/10.1093/plcell/koad174.

Dekomah, S., Bi, Z., Dormatey, R., Wang, Y., Haider, F., Sun, C., … & Bai, J. (2022). The role of cdpks in plant development, nutrient and stress signaling. Frontiers in Genetics, 13. https://doi.org/10.3389/fgene.2022.996203.

Iqbal, N., Sehar, Z., Fatma, M., Umar, S., Sofo, A., & Khan, N. (2022). Nitric oxide and abscisic acid mediate heat stress tolerance through regulation of osmolytes and antioxidants to protect photosynthesis and growth in wheat plants. Antioxidants, 11(2), 372. https://doi.org/10.3390/antiox11020372.

Khan, F., Goher, F., Paulsmeyer, M., Hu, C., & Zhang, J. (2023). Calcium (ca2+) sensors and myc2 are crucial players during jasmonates‐mediated abiotic stress tolerance in plants. Plant Biology, 25(7), 1025-1034. https://doi.org/10.1111/plb.13560.

Liu, L., Xiang, Y., Yan, J., Di, P., Li, J., Sun, X., … & Zhang, A. (2021). Brassinosteroid‐signaling kinase 1 phosphorylating calcium/calmodulin‐dependent protein kinase functions in drought tolerance in maize. New Phytologist, 231(2), 695-712. https://doi.org/10.1111/nph.17403.

Paul, S., Duhan, J., Jaiswal, S., Angadi, U., Sharma, R., Raghav, N., … & Tiwari, R. (2022). Rna-seq analysis of developing grains of wheat to intrigue into the complex molecular mechanism of the heat stress response. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.904392.

Sehar, Z., Gautam, H., Masood, A., & Khan, N. (2022). Ethylene- and proline-dependent regulation of antioxidant enzymes to mitigate heat stress and boost photosynthetic efficacy in wheat plants. Journal of Plant Growth Regulation, 42(5), 2683-2697. https://doi.org/10.1007/s00344-022-10737-8.

Wang, Y., Qin, T., Pu, Z., Dekomah, S., Yao, P., Sun, C., … & Bai, J. (2023). Foliar application of chelated sugar alcohol calcium improves photosynthesis and tuber quality under drought stress in potatoes (solanum tuberosum l.). International Journal of Molecular Sciences, 24(15), 12216. https://doi.org/10.3390/ijms241512216.

Yan, J., Wang, D., Kang, S., Zhang, H., Li, X., Tang, W., … & Pang, C. (2023). Ethylene regulates combined drought and low nitrogen tolerance in wheat: proteomic analysis. Agronomy, 13(7), 1950. https://doi.org/10.3390/agronomy13071950.

Zhao, Y., Du, H., Wang, Y., Wang, H., Yang, S., Chao-hai, L., … & Hu, X. (2021). The calcium‐dependent protein kinase zmcdpk7 functions in heat‐stress tolerance in maize. Journal of Integrative Plant Biology, 63(3), 510-527. https://doi.org/10.1111/jipb.13056.

Abasi, F., Raja, N. I., Mashwani, Z.-u.-R., Ehsan, M., Ali, H., & Shahbaz, M. (2024). Heat and Wheat: Adaptation strategies with respect to heat shock proteins and antioxidant potential; an era of climate change. International Journal of Biological Macromolecules, 256, 128379. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2023.128379

Al-Ashkar, I., Alotaibi, M., Refay, Y., Ghazy, A., Zakri, A., & Al-Doss, A. (2020). Selection criteria for high-yielding and early-flowering bread wheat hybrids under heat stress. PLoS One, 15(8), e0236351. https://doi.org/10.1371/journal.pone.0236351

Alam, M., Baenziger, P. S., & Frels, K. (2024). Emerging Trends in Wheat (Triticum spp.) Breeding: Implications for the Future. FBE, 16(1). https://doi.org/10.31083/j.fbe1601002

Aydin, N., Demir, B., Akdag, H., Gokmen, S., Sayaslan, A., Bayraç, C., Sönmez, M. E., & Türkoğlu, A. (2024). Accelerated breeding strategies for biochemical marker-assisted backcross breeding and mapping population development in bread wheat (Triticum aestivum L.). Euphytica, 220(7), 116. https://doi.org/10.1007/s10681-024-03370-x

Farhad, M., Kumar, U., Tomar, V., Bhati, P. K., Krishnan J., N., Kishowar-E-Mustarin, Barek, V., Brestic, M., & Hossain, A. (2023). Heat stress in wheat: a global challenge to feed billions in the current era of the changing climate [Review]. Frontiers in Sustainable Food Systems, 7. https://doi.org/10.3389/fsufs.2023.1203721

Hassan, M. I., Mohamed, E. A., El-rawy, M. A., & Amein, K. A. (2016). Evaluating interspecific wheat hybrids based on heat and drought stress tolerance. Journal of Crop Science and Biotechnology, 19(1), 85-98. https://doi.org/10.1007/s12892-015-0085-x

Kaur, R., Sinha, K., & Bhunia, R. K. (2019). Can wheat survive in heat? Assembling tools towards successful development of heat stress tolerance in Triticum aestivum L. Molecular Biology Reports, 46(2), 2577-2593. https://doi.org/10.1007/s11033-019-04686-x

Kumar, M., Prusty, M. R., Pandey, M. K., Singh, P. K., Bohra, A., Guo, B., & Varshney, R. K. (2023). Application of CRISPR/Cas9-mediated gene editing for abiotic stress management in crop plants. Front Plant Sci, 14, 1157678. https://doi.org/10.3389/fpls.2023.1157678

Kumar, P. K. C., Bellundagi, A., Krishna, H., Mallikarjuna, M. G., Thimmappa, R. K., Rai, N., Shashikumara, P., Sinha, N., Jain, N., Singh, P. K., Singh, G. P., & Prabhu, K. V. (2023). Development of bread wheat (Triticum aestivum L) variety HD3411 following marker-assisted backcross breeding for drought tolerance [Original Research]. Frontiers in Genetics, 14. https://doi.org/10.3389/fgene.2023.1046624

Kumar, R., Kaur, A., Pandey, A., Mamrutha, H. M., & Singh, G. P. (2019). CRISPR-based genome editing in wheat: a comprehensive review and future prospects. Molecular Biology Reports, 46(3), 3557-3569. https://doi.org/10.1007/s11033-019-04761-3

Kumari, M., Dubey, A. K., Kumar, R., & Kumar, A. (2024). Chapter 18 - Marker-assisted selection in plant breeding for stress tolerance. In M. A. Ahanger, J. A. Bhat, P. Ahmad, & R. John (Eds.), Improving Stress Resilience in Plants (pp. 371-387). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-443-18927-2.00005-4

Li, W., Liu, J., Zhang, H., Liu, Z., Wang, Y., Xing, L., He, Q., & Du, H. (2022). Plant pan-genomics: recent advances, new challenges, and roads ahead. Journal of Genetics and Genomics, 49(9), 833-846. https://doi.org/https://doi.org/10.1016/j.jgg.2022.06.004

Mushtaq, M. A., Ahmed, H. G. M.-D., & Zeng, Y. (2024). Applications of Artificial Intelligence in Wheat Breeding for Sustainable Food Security. Sustainability, 16(13), 5688. https://www.mdpi.com/2071-1050/16/13/5688

Ni, Z., Li, H., Zhao, Y., Peng, H., Hu, Z., Xin, M., & Sun, Q. (2018). Genetic improvement of heat tolerance in wheat: Recent progress in understanding the underlying molecular mechanisms. The Crop Journal, 6(1), 32-41. https://doi.org/https://doi.org/10.1016/j.cj.2017.09.005

Pandurangan, S., Workman, C., Nilsen, K., & Kumar, S. (2022). Introduction to Marker-Assisted Selection in Wheat Breeding. In A. Bilichak & J. D. Laurie (Eds.), Accelerated Breeding of Cereal Crops (pp. 77-117). Springer US. https://doi.org/10.1007/978-1-0716-1526-3_3

Reynolds, M. P., Lewis, J. M., Ammar, K., Basnet, B. R., Crespo-Herrera, L., Crossa, J., Dhugga, K. S., Dreisigacker, S., Juliana, P., Karwat, H., Kishii, M., Krause, M. R., Langridge, P., Lashkari, A., Mondal, S., Payne, T., Pequeno, D., Pinto, F., Sansaloni, C.Braun, H. J. (2021). Harnessing translational research in wheat for climate resilience. J Exp Bot, 72(14), 5134-5157. https://doi.org/10.1093/jxb/erab256

Sarkar, S., Islam, A. K. M. A., Barma, N. C. D., & Ahmed, J. U. (2021). Tolerance mechanisms for breeding wheat against heat stress: A review. South African Journal of Botany, 138, 262-277. https://doi.org/https://doi.org/10.1016/j.sajb.2021.01.003

Singh, A., Rajput, V. D., Varshney, A., Ghazaryan, K., & Minkina, T. (2023). Small Tech, Big Impact: Agri-nanotechnology Journey to Optimize Crop Protection and Production for Sustainable Agriculture. Plant Stress, 10, 100253. https://doi.org/https://doi.org/10.1016/j.stress.2023.100253

Sun, L., Wen, J., Peng, H., Yao, Y., Hu, Z., Ni, Z., Sun, Q., & Xin, M. (2022). The genetic and molecular basis for improving heat stress tolerance in wheat. aBIOTECH, 3(1), 25-39. https://doi.org/10.1007/s42994-021-00064-z

Yadav, M. R., Choudhary, M., Singh, J., Lal, M. K., Jha, P. K., Udawat, P., Gupta, N. K., Rajput, V. D., Garg, N. K., Maheshwari, C., Hasan, M., Gupta, S., Jatwa, T. K., Kumar, R., Yadav, A. K., & Prasad, P. V. V. (2022). Impacts, Tolerance, Adaptation, and Mitigation of Heat Stress on Wheat under Changing Climates. Int J Mol Sci, 23(5). https://doi.org/10.3390/ijms23052838

Yadav, R. K., Tripathi, M. K., Tiwari, S., Tripathi, N., Asati, R., Chauhan, S., Tiwari, P. N., & Payasi, D. K. (2023). Genome Editing and Improvement of Abiotic Stress Tolerance in Crop Plants. Life, 13(7), 1456. https://www.mdpi.com/2075-1729/13/7/1456

Downloads

Published

2024-11-29

How to Cite

ULLAH , I., MAJEED , H., BATOOL , R., FAROOQ, S., GULAB , R., & HABIBA , S. (2024). A REVIEW: EXPLORING GENETIC VARIATION AND REGULATORY NETWORKS IN WHEAT HEAT STRESS TOLERANCE. Biological and Clinical Sciences Research Journal, 2024(1), 1342. https://doi.org/10.54112/bcsrj.v2024i1.1342