USE OF NANOTECHNOLOGY IN CANCER TREATMENT: A REVIEW
DOI:
https://doi.org/10.54112/bcsrj.v2024i1.1116Keywords:
Nanotechnology, Cancer Therapy, Drug Delivery, Immunotherapy, Multidrug Resistance, Nanoparticles, Clinical TranslationAbstract
Nanotechnology has become a revolutionary instrument in cancer treatment, providing unparalleled possibilities for boosting drug administration, increasing treatment selectivity, and decreasing systemic toxicity. This review aims to analyze the use of nanoparticles in cancer treatment, explicitly emphasizing drug delivery methods, cancer immunotherapy, and the mitigation of multidrug resistance. This paper aims to thoroughly analyze the main developments in nanoparticle-based therapeutics by synthesizing existing research. Additionally, it will highlight essential deficiencies in the literature, including the restricted clinical use and long-term biocompatibility of these technologies. This study will evaluate research conducted in the last ten years, focusing on recent advancements in nanotechnology, specifically its ability to improve chemotherapy and radiation by leveraging synergistic effects. The investigation will also investigate the obstacles encountered in the field, such as regulatory gaps and safety issues, that hinder the broader implementation of nanotechnology in cancer. Finally, this review will provide valuable perspectives on the future of nanomedicine in cancer therapy, suggesting particular domains for additional studies, such as more rigorous clinical trials and more thorough examinations of nanoparticle interactions within the tumor microenvironment. The results will improve patient outcomes by contributing to the creation of more individualized and efficient cancer treatments.
Downloads
References
Morris SA, Farrell D, Grodzinski PJJotNCCN. Nanotechnologies in cancer treatment and diagnosis. 2014;12(12):1727-33.
Cattaneo AG, Gornati R, Sabbioni E, Chiriva‐Internati M, Cobos E, Jenkins MR, et al. Nanotechnology and human health: risks and benefits. 2010;30(8):730-44.
Bu H, Gao Y, Li YJSCC. Overcoming multidrug resistance (MDR) in cancer by nanotechnology. 2010;53:2226-32.
Hannon G, Lysaght J, Liptrott NJ, Prina‐Mello AJAS. Immunotoxicity considerations for next generation cancer nanomedicines. 2019;6(19):1900133.
Haume K, Rosa S, Grellet S, Śmiałek MA, Butterworth KT, Solov’yov AV, et al. Gold nanoparticles for cancer radiotherapy: a review. 2016;7:1-20.
Johnson RJJBp. A research study review of effectiveness of treatments for psychiatric conditions common to end-stage cancer patients: needs assessment for future research and an impassioned plea. 2018;18:1-16.
Kolhe S, Parikh KJIJoBR, Applications. Application of nanotechnology in cancer: a review. 2012;8(1-2):112-25.
Tran S, DeGiovanni P-J, Piel B, Rai PJC, medicine t. Cancer nanomedicine: a review of recent success in drug delivery. 2017;6:1-21.
Nehoff H, Parayath NN, Domanovitch L, Taurin S, Greish KJIjon. Nanomedicine for drug targeting: strategies beyond the enhanced permeability and retention effect. 2014:2539-55.
Maeda H, Sawa T, Konno TJJocr. Mechanism of tumor-targeted delivery of macromolecular drugs, including the EPR effect in solid tumor and clinical overview of the prototype polymeric drug SMANCS. 2001;74(1-3):47-61.
Yoo HS, Lee KH, Oh JE, Park TGJJocR. In vitro and in vivo anti-tumor activities of nanoparticles based on doxorubicin–PLGA conjugates. 2000;68(3):419-31.
Matsumura YJJodt. Preclinical and clinical studies of anticancer drug-incorporated polymeric micelles. 2007;15(7-8):507-17.
Cho K, Wang X, Nie S, Chen Z, Shin DMJCcr. Therapeutic nanoparticles for drug delivery in cancer. 2008;14(5):1310-6.
Bharali DJ, Mousa SAJP, therapeutics. Emerging nanomedicines for early cancer detection and improved treatment: current perspective and future promise. 2010;128(2):324-35.
Tokas R, Bhardwaj LK, Kumar N, Jindal T. A Comprehensive Review on Nanotechnology (NT) for a Sustainable Development and Future. 2023.
Wahajuddin n, Arora SJIjon. Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers. 2012:3445-71.
Pandey P, Dureja HJRPoN. Recent patents on polymeric nanoparticles for cancer therapy. 2018;12(2):155-69.
Afolalu SA, Ikumapayi OM, Oloyede OR, Ogedengbe TS, Ogundipe AT, editors. Advances in Nanotechnology and Nanoparticles in the 21st Century–An Overview. Proceedings of the 3rd African international conference on industrial engineering and operations management, Nsukka, Nigeria; 2022.
Majoros IJ, Ward BB, Lee K-H, Choi SK, Huang B, Myc A, et al. Progress in cancer nanotechnology. 2010;95:193-236.
Hull L, Farrell D, Grodzinski PJBa. Highlights of recent developments and trends in cancer nanotechnology research—View from NCI Alliance for Nanotechnology in Cancer. 2014;32(4):666-78.
Abraham SA, Waterhouse DN, Mayer LD, Cullis PR, Madden TD, Bally MB. The liposomal formulation of doxorubicin. Methods in enzymology. 391: Elsevier; 2005. p. 71-97.
Gonçalves M, Mignani S, Rodrigues J, Tomás HJJoCR. A glance over doxorubicin based-nanotherapeutics: From proof-of-concept studies to solutions in the market. 2020;317:347-74.
Cuenca AG, Jiang H, Hochwald SN, Delano M, Cance WG, Grobmyer SRJC. Emerging implications of nanotechnology on cancer diagnostics and therapeutics. 2006;107(3):459-66.
Lin W, Hyeon T, Lanza GM, Zhang M, Meade TJJMb. Magnetic nanoparticles for early detection of cancer by magnetic resonance imaging. 2009;34(6):441-8.
Chen H, Zhang W, Zhu G, Xie J, Chen XJNRM. Rethinking cancer nanotheranostics. 2017;2(7):1-18.
Nakamura Y, Mochida A, Choyke PL, Kobayashi HJBc. Nanodrug delivery: is the enhanced permeability and retention effect sufficient for curing cancer? 2016;27(10):2225-38.
Huxford RC, Della Rocca J, Lin WJCoicb. Metal–organic frameworks as potential drug carriers. 2010;14(2):262-8.
Fernandez-Fernandez A, Manchanda R, Kumari MJFiP. Lipid-engineered nanotherapeutics for cancer management. 2023;14:1125093.
Eloy JO, de Souza MC, Petrilli R, Barcellos JPA, Lee RJ, Marchetti JMJC, et al. Liposomes as carriers of hydrophilic small molecule drugs: strategies to enhance encapsulation and delivery. 2014;123:345-63.
Shahbazi M-A, Herranz B, Santos HAJB. Nanostructured porous Si-based nanoparticles for targeted drug delivery. 2012;2(4):296-312.
Palmerston Mendes L, Pan J, Torchilin VPJM. Dendrimers as nanocarriers for nucleic acid and drug delivery in cancer therapy. 2017;22(9):1401.
Xiong Z, Shen M, Shi XJSCM. 基于树状大分子的癌症治疗策略: 最新进展和未来展望. 2018;61:1387-403.
Estelrich J, Busquets MAJM. Iron oxide nanoparticles in photothermal therapy. 2018;23(7):1567.
Gallo J, Long NJ, Aboagye EOJCSR. Magnetic nanoparticles as contrast agents in the diagnosis and treatment of cancer. 2013;42(19):7816-33.
Guo S, Huang LJBa. Nanoparticles containing insoluble drug for cancer therapy. 2014;32(4):778-88.
Chivere VT, Kondiah PP, Choonara YE, Pillay VJC. Nanotechnology-based biopolymeric oral delivery platforms for advanced cancer treatment. 2020;12(2):522.
Parveen S, Arjmand F, Tabassum SJRa. Clinical developments of antitumor polymer therapeutics. 2019;9(43):24699-721.
Dinarvand R, Sepehri n, Manoochehri S, Rouhani H, Atyabi FJIjon. Polylactide-co-glycolide nanoparticles for controlled delivery of anticancer agents. 2011:877-95.
Martínez A, Fernández A, Pérez E, Benito M, Teijón J, Blanco MJTdon. Polysaccharide-based nanoparticles for controlled release formulations. 2012:185-222.
Yuan H, Miao J, Du Y-Z, You J, Hu F-Q, Zeng SJIjop. Cellular uptake of solid lipid nanoparticles and cytotoxicity of encapsulated paclitaxel in A549 cancer cells. 2008;348(1-2):137-45.
Tiwari PM, Vig K, Dennis VA, Singh SRJN. Functionalized gold nanoparticles and their biomedical applications. 2011;1(1):31-63.
Dhar S, Gu FX, Langer R, Farokhzad OC, Lippard SJJPotNAoS. Targeted delivery of cisplatin to prostate cancer cells by aptamer functionalized Pt (IV) prodrug-PLGA–PEG nanoparticles. 2008;105(45):17356-61.
Navya P, Kaphle A, Srinivas S, Bhargava SK, Rotello VM, Daima HKJNc. Current trends and challenges in cancer management and therapy using designer nanomaterials. 2019;6(1):23.
Brigger I, Dubernet C, Couvreur PJAddr. Nanoparticles in cancer therapy and diagnosis. 2012;64:24-36.
Acharya S, Sahoo SKJAddr. PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect. 2011;63(3):170-83.
Lai Y-H, Chiang C-S, Kao T-H, Chen S-YJIJoN. Dual-drug nanomedicine with hydrophilic F127-modified magnetic nanocarriers assembled in amphiphilic gelatin for enhanced penetration and drug delivery in deep tumor tissue. 2018:3011-26.
Saito A, Kitayama J, Nagai R, Aizawa KJP. Anatomical targeting of anticancer drugs to solid tumors using specific administration routes. 2023;15(6):1664.
Greish KJJodt. Enhanced permeability and retention of macromolecular drugs in solid tumors: a royal gate for targeted anticancer nanomedicines. 2007;15(7-8):457-64.
Nakamura H, Jun F, Maeda HJEoodd. Development of next-generation macromolecular drugs based on the EPR effect: challenges and pitfalls. 2015;12(1):53-64.
Alexis F, Rhee J-W, Richie JP, Radovic-Moreno AF, Langer R, Farokhzad OC, editors. New frontiers in nanotechnology for cancer treatment. Urologic oncology: seminars and original investigations; 2008: Elsevier.
Yong T, Zhang X, Bie N, Zhang H, Zhang X, Li F, et al. Tumor exosome-based nanoparticles are efficient drug carriers for chemotherapy. 2019;10(1):3838.
Low PS, Kularatne SAJCoicb. Folate-targeted therapeutic and imaging agents for cancer. 2009;13(3):256-62.
Hirsjarvi S, Passirani C, Benoit J-PJCddt. Passive and active tumour targeting with nanocarriers. 2011;8(3):188-96.
Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OCJAddr. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. 2014;66:2-25.
Wu G, Wang Z, Bian X, Du X, Wei CJPB. Folate-modified doxorubicin-loaded nanoparticles for tumor-targeted therapy. 2014;52(8):978-82.
Wang M, Thanou MJPr. Targeting nanoparticles to cancer. 2010;62(2):90-9.
Yao M, Liu X, Qian Z, Fan D, Sun X, Zhong L, et al. Research progress of nanovaccine in anti-tumor immunotherapy. 2023;13:1211262.
Jiang Z, Zhang W, Zhang J, Liu T, Xing J, Zhang H, et al. Nanomaterial-based drug delivery systems: a new weapon for cancer immunotherapy. 2022;17:4677.
De Mattos-Arruda L, Blanco-Heredia J, Aguilar-Gurrieri C, Carrillo J, Blanco JJEo. New emerging targets in cancer immunotherapy: the role of neoantigens. 2019;4:e000684.
Sagnella SM, McCarroll JA, Kavallaris MJNN, Biology, Medicine. Drug delivery: beyond active tumour targeting. 2014;10(6):1131-7.
Lou J, Zhang L, Zheng GJAT. Advancing cancer immunotherapies with nanotechnology. 2019;2(4):1800128.
Park W, Heo Y-J, Han DKJBr. New opportunities for nanoparticles in cancer immunotherapy. 2018;22(1):24.
Fang RH, Kroll AV, Zhang LJS. Nanoparticle‐based manipulation of antigen‐presenting cells for cancer immunotherapy. 2015;11(41):5483-96.
Sharma R, Vyas SJDD, Pharmacy I. Mannose functionalized plain and endosomolytic nanocomposite (s)-based approach for the induction of effective antitumor immune response in C57BL/6 mice melanoma model. 2019;45(7):1089-100.
Serda REJIjon. Particle platforms for cancer immunotherapy. 2013:1683-96.
Pardoll DMJNrc. The blockade of immune checkpoints in cancer immunotherapy. 2012;12(4):252-64.
Yin W-m, Li Y-w, Gu Y-q, Luo MJAPS. Nanoengineered targeting strategy for cancer immunotherapy. 2020;41(7):902-10.
Dawidczyk CM, Kim C, Park JH, Russell LM, Lee KH, Pomper MG, et al. State-of-the-art in design rules for drug delivery platforms: lessons learned from FDA-approved nanomedicines. 2014;187:133-44.
Qiao W, Wang B, Wang Y, Yang L, Zhang Y, Shao PJJoN. Cancer therapy based on nanomaterials and nanocarrier systems. 2010;2010(1):796303.
Singh MS, Bhaskar SJI, Therapy. Nanocarrier-based immunotherapy in cancer management and research. 2014:121-34.
Zhao H, Li Y, Wei D, Luo HJJoIR. The application of nanoparticle‐based drug delivery systems in checkpoint blockade cancer immunotherapy. 2018;2018(1):3673295.
de Araújo Lopes SC, dos Santos Giuberti C, Rocha TGR, dos Santos Ferreira D, Leite EA, Oliveira MCJCtc, et al. Liposomes as carriers of anticancer drugs. 2013.
Jain RK, Stylianopoulos TJNrCo. Delivering nanomedicine to solid tumors. 2010;7(11):653-64.
Schneider E, Cowan KHJMjoA. Multiple drug resistance in cancer therapy. 1994;160(6):371-2.
Chen H-H, Huang W-C, Chiang W-H, Liu T-I, Shen M-Y, Hsu Y-H, et al. pH-Responsive therapeutic solid lipid nanoparticles for reducing P-glycoprotein-mediated drug efflux of multidrug resistant cancer cells. 2015:5035-48.
Zou S, Cao N, Cheng D, Zheng R, Wang J, Zhu K, et al. Enhanced apoptosis of ovarian cancer cells via nanocarrier-mediated codelivery of siRNA and doxorubicin. 2012:3823-35.
Mfouo Tynga I, Abrahamse HJN. Nano-mediated photodynamic therapy for cancer: Enhancement of cancer specificity and therapeutic effects. 2018;8(11):923.
Oh KT, Baik HJ, Lee AH, Oh YT, Youn YS, Lee ESJIjoms. The reversal of drug-resistance in tumors using a drug-carrying nanoparticular system. 2009;10(9):3776-92.
Li S, Zhang Y, Wang J, Zhao Y, Ji T, Zhao X, et al. Nanoparticle-mediated local depletion of tumour-associated platelets disrupts vascular barriers and augments drug accumulation in tumours. 2017;1(8):667-79.
Palakurthi S, Yellepeddi VK, Vangara KKJEoodd. Recent trends in cancer drug resistance reversal strategies using nanoparticles. 2012;9(3):287-301.
Zhang M, Liu E, Cui Y, Huang YJCb, medicine. Nanotechnology-based combination therapy for overcoming multidrug-resistant cancer. 2017;14(3):212.
Ion R-MJAiB, Pier Andrea Serra , Intech. Photodynamic nanomedicine strategies in cancer therapy and drug delivery. 2015:253-87.
Roeth AA, Slabu I, Baumann M, Alizai PH, Schmeding M, Guentherodt G, et al. Establishment of a biophysical model to optimize endoscopic targeting of magnetic nanoparticles for cancer treatment. 2017:5933-40.
Luo D, Carter KA, Miranda D, Lovell JFJAS. Chemophototherapy: an emerging treatment option for solid tumors. 2017;4(1):1600106.
Zhou L, Wang H, Li YJT. Stimuli-responsive nanomedicines for overcoming cancer multidrug resistance. 2018;8(4):1059.
Paris JL, Villaverde G, Gómez-Graña S, Vallet-Regí MJAb. Nanoparticles for multimodal antivascular therapeutics: Dual drug release, photothermal and photodynamic therapy. 2020;101:459-68.
Aniogo EC, George BPA, Abrahamse HJTB. In vitro combined effect of Doxorubicin and sulfonated zinc Phthalocyanine–mediated photodynamic therapy on MCF-7 breast cancer cells. 2017;39(10):1010428317727278.
George J, Yan IK, Patel TJLI. Nanovesicle-mediated delivery of anticancer agents effectively induced cell death and regressed intrahepatic tumors in athymic mice. 2018;98(7):895-910.
Retif P, Pinel S, Toussaint M, Frochot C, Chouikrat R, Bastogne T, et al. Nanoparticles for radiation therapy enhancement: the key parameters. 2015;5(9):1030.
Cooper DR, Bekah D, Nadeau JLJFic. Gold nanoparticles and their alternatives for radiation therapy enhancement. 2014;2:86.
Ruiz-González R, Milán P, Bresolí-Obach R, Stockert JC, Villanueva A, Cañete M, et al. Photodynamic synergistic effect of pheophorbide a and doxorubicin in combined treatment against tumoral cells. 2017;9(2):18.
Xie L, Zhang X, Chu C, Dong Y, Zhang T, Li X, et al. Preparation, toxicity reduction and radiation therapy application of gold nanorods. 2021;19:1-17.
Morozov KV, Kolyvanova MA, Kartseva ME, Shishmakova EM, Dement’eva OV, Isagulieva AK, et al. Radiosensitization by gold nanoparticles: impact of the size, dose rate, and photon energy. 2020;10(5):952.
Maggiorella L, Barouch G, Devaux C, Pottier A, Deutsch E, Bourhis J, et al. Nanoscale radiotherapy with hafnium oxide nanoparticles. 2012;8(9):1167-81.
Li Y, Qi Y, Zhang H, Xia Z, Xie T, Li W, et al. Gram-scale synthesis of highly biocompatible and intravenous injectable hafnium oxide nanocrystal with enhanced radiotherapy efficacy for cancer theranostic. 2020;226:119538.
Feng N, Liu Y, Dai X, Wang Y, Guo Q, Li QJRa. Advanced applications of cerium oxide based nanozymes in cancer. 2022;12(3):1486-93.
Lammers T, Hennink W, Storm GJBjoc. Tumour-targeted nanomedicines: principles and practice. 2008;99(3):392-7.
Kobayashi H, Watanabe R, Choyke PLJT. Improving conventional enhanced permeability and retention (EPR) effects; what is the appropriate target? 2014;4(1):81.
Harris JC, Scully MA, Day ESJC. Cancer cell membrane-coated nanoparticles for cancer management. 2019;11(12):1836.
Ayers D, Nasti AJJoDD. Utilisation of nanoparticle technology in cancer chemoresistance. 2012;2012(1):265691.
Yhee JY, Lee S, Kim KJN. Advances in targeting strategies for nanoparticles in cancer imaging and therapy. 2014;6(22):13383-90.
Kipps E, Young K, Starling NJTaimo. Liposomal irinotecan in gemcitabine-refractory metastatic pancreatic cancer: efficacy, safety and place in therapy. 2017;9(3):159-70.
Hainfeld JF, Dilmanian FA, Zhong Z, Slatkin DN, Kalef-Ezra JA, Smilowitz HMJPiM, et al. Gold nanoparticles enhance the radiation therapy of a murine squamous cell carcinoma. 2010;55(11):3045.
Shen H, Huang H, Jiang ZJFiP. Nanoparticle-based radiosensitization strategies for improving radiation therapy. 2023;14:1145551.
Huang X, O'Connor R, Kwizera EAJN. Gold nanoparticle based platforms for circulating cancer marker detection. 2017;1(1):80.
Li W, Peng A, Wu H, Quan Y, Li Y, Lu L, et al. Anti-cancer nanomedicines: A revolution of tumor immunotherapy. 2020;11:601497.
Wolfram J, Zhu M, Yang Y, Shen J, Gentile E, Paolino D, et al. Safety of nanoparticles in medicine. 2015;16(14):1671-81.
Nyström AM, Fadeel BJJocr. Safety assessment of nanomaterials: implications for nanomedicine. 2012;161(2):403-8.
El-Ansary A, Al-Daihan SJJot. On the toxicity of therapeutically used nanoparticles: an overview. 2009;2009(1):754810.
Wei Y, Quan L, Zhou C, Zhan QJN. Factors relating to the biodistribution & clearance of nanoparticles & their effects on in vivo application. 2018;13(12):1495-512.
De Jong WH, Borm PJJIjon. Drug delivery and nanoparticles: applications and hazards. 2008;3(2):133-49.
Banoun H. État actuel des connaissances sur l'excrétion de l'ARNm et de la spike produite par les vaccins à ARNm anti-Covid-19; possibilité de contamination de l'entourage des personnes vaccinées par ces produits. 2022.
De La Cruz GG, Rodríguez-Fragoso P, Reyes-Esparza J, Rodríguez-López A, Gómez-Cansino R, Rodriguez-Fragoso LJUtsponp, et al. Interaction of nanoparticles with blood components and associated pathophysiological effects. 2018.
Pautler M, Brenner SJIjon. Nanomedicine: promises and challenges for the future of public health. 2010:803-9.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 MT AHMAD , M NOOR , MU HAIDER , H SHAUKAT , HF SALEEM , HMU DIN , NA NASIR , MA RAO , MNUR KHAN , MB TARIQ
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.