COMPARISON OF USING J TIP GUIDE WIRE VS STRAIGHT TIP GUIDE WIRE DURING PUNCTURE AND TRACT FORMATION IN PCNL
DOI:
https://doi.org/10.54112/bcsrj.v2024i1.1082Keywords:
Percutaneous nephrolithotomy, J tip guide wire, Straight tip guide wire, Kidney stones, Surgical outcomesAbstract
Percutaneous nephrolithotomy (PCNL) is a widely used surgical technique for removing large or complex kidney stones. The choice of guide wire during puncture and tract formation may influence the procedure's ease, safety, and success. Objective: This study aimed to compare J-tip guide wire versus straight-tip guide wire during puncture and tract formation in PCNL, focusing on ease of use, safety, and clinical outcomes. Methods: A comparative study was conducted at CMH, Lahore, from April 2024 to July 2024. A total of 89 patients were randomly assigned into two groups: Group A, using the J tip guide wire (n=45), and Group B, using the straight tip guide wire (n=44). Data were collected on ease of insertion, complication rates, procedural duration, and success rates. Statistical analysis was performed using SPSS software, with p<0.05 considered statistically significant. Results: The average age of patients in Group A was 52.3 ± 10.4 years and in Group B, 50.7 ± 11.2 years. Group A demonstrated significantly better ease of insertion with a mean score of 8.7 ± 0.9 compared to 7.5 ± 1.2 in Group B (p=0.003). Complication rates were lower in Group A (4.4%) versus Group B (22.7%, p=0.024), with fewer minor traumas (4.4% vs. 15.9%, p=0.048). The procedure duration was shorter in Group A (25.4 ± 5.1 minutes) compared to Group B (30.2 ± 6.3 minutes, p=0.001). The success rate was higher in Group A (97.8% vs. 90.9%), although this difference was not statistically significant (p=0.092). Conclusion: The J tip guide wire shows significant advantages over the straight tip guide wire in PCNL procedures, offering improved ease of use, reduced complication rates, and shorter procedural duration. These findings suggest that the J tip guide wire is valuable for enhancing PCNL outcomes.
Downloads
References
Vicentini FC, Gomes CM, Danilovic A, Neto EA, Mazzucchi E, Srougi M. Percutaneous nephrolithotomy: Current concepts. Indian J Urol. 2009 Jan;25(1):4-10. doi: 10.4103/0970-1591.44281. PMID: 19468422; PMCID: PMC2684301.
Assimos, D., Krambeck, A., Miller, N.L., Monga, M., Murad, M.H., Nelson, C.P., et al., 2016. Surgical management of stones: American Urological Association/Endourological Society Guideline, PART I. Journal of Urology, 196(4), pp.1153-1160. https://doi.org/10.1016/j.juro.2016.05.090
Wei, C., Zhang, Y., Pokhrel, G., Liu, X., Gan, J., Yu, X., et al., 2018. Research progress of percutaneous nephrolithotomy. International Urology and Nephrology, 50(5), pp.807-817. https://doi.org/10.1007/s11255-018-1847-4
Gökce, M.I., Ibiş, A., Sancı, A., Akıncı, A., Bağcı, U., Ağaoğlu, E.A., et al., 2017. Comparison of supine and prone positions for percutaneous nephrolithotomy in treatment of staghorn stones. Urolithiasis, 45(6), pp.603-608. https://doi.org/10.1007/s00240-017-0977-y
Yuan, D., Liu, Y., Rao, H., Cheng, T.F., Sun, Z.L., Wang, Y.L., et al., 2016. Supine versus prone position in percutaneous nephrolithotomy for kidney calculi: a meta-analysis. Journal of Endourology, 30(7), pp.754-763. https://doi.org/10.1089/end.2015.0402
Zhu, W., Li, J., Yuan, J., Liu, Y., Wan, S.P., Liu, G., et al., 2017. A prospective and randomised trial comparing fluoroscopic, total ultrasonographic, and combined guidance for renal access in mini-percutaneous nephrolithotomy. BJU International, 119(4), pp.612-618. https://doi.org/10.1111/bju.13703
Armitage, J.N., Withington, J., Fowler, S., Finch, W.J.G., Burgess, N.A., Irving, S.O., et al., 2017. Percutaneous nephrolithotomy access by urologist or interventional radiologist: practice and outcomes in the UK. BJU International, 119(6), pp.913-918. https://doi.org/10.1111/bju.13817
Srivastava, A., Singh, S., Dhayal, I.R. and Rai, P., 2017. A prospective randomized study comparing the four tract dilation methods of percutaneous nephrolithotomy. World Journal of Urology, 35(5), pp.803-807. https://doi.org/10.1007/s00345-016-1929-9
Sakr, A., Salem, E., Kamel, M., Desoky, E., Ragab, A. and Omran, M., 2017. Minimally invasive percutaneous nephrolithotomy vs standard PCNL for management of renal stones in the flank-free modified supine position: single-center experience. Urolithiasis, 45(6), pp.585-589. https://doi.org/10.1007/s00240-017-0966-1
Ahmed, A.F., Abdelazim, H., ElMesery, M., El-feky, M., Gomaa, A. and Tagreda, I., et al., 2021. Mini-percutaneous nephrolithotomy is a safe alternative to extracorporeal shockwave lithotripsy for high-density, renal stones: a prospective, randomised trial. BJU International, 128(6), pp.744-751. https://doi.org/10.1111/bju.15493
Radfar, M.H., Basiri, A., Nouralizadeh, A., Shemshaki, H., Sarhangnejad, R. and Kashi, A.H., et al., 2017. Comparing the efficacy and safety of ultrasonic versus pneumatic lithotripsy in percutaneous nephrolithotomy: a randomized clinical trial. European Urology Focus, 3(1), pp.82-88. https://doi.org/10.1016/j.euf.2017.02.003
Choi, S.W., Bae, W.J., Ha, U.S., Hong, S.H., Lee, J.Y., Kim, S.W., et al., 2017. Prediction of stone-free status and complication rates after tubeless percutaneous nephrolithotomy: a comparative and retrospective study using three stone-scoring systems and preoperative parameters. World Journal of Urology, 35(3), pp.449-457. https://doi.org/10.1007/s00345-016-1891-6
Sofer, M., Proietti, S., Bar-Yosef, Y., Dekalo, S., Rosso, M., Mintz, I., et al., 2017. Assessment of bilateral supine and prone tubeless percutaneous nephrolithotomy. Canadian Journal of Urology, 24(6), pp.9114-9120.
Chu, C., Masic, S., Usawachintachit, M., Hu, W., Yang, W., Stoller, M., et al., 2016. Ultrasound-guided renal access for percutaneous nephrolithotomy: a description of three novel ultrasound-guided needle techniques. Journal of Endourology, 30(2), pp.153-158. https://doi.org/10.1089/end.2015.0185
Wollin, D.A. and Preminger, G.M., 2018. Percutaneous nephrolithotomy: complications and how to deal with them. Urolithiasis, 46(1), pp.87-97. https://doi.org/10.1007/s00240-017-1022-x
de Souza Melo, P.A., Vicentini, F.C., Beraldi, A.A., Hisano, M., Murta, C.B. and de Almeida Claro, J.F., 2018. Outcomes of more than 1 000 percutaneous nephrolithotomies and validation of Guy's stone score. BJU International, 121(4), pp.640-646. https://doi.org/10.1111/bju.14129
Kim, E. H., Kang, P., Song, I. S., Ji, S. H., Jang, Y. E., Lee, J. H., Kim, H. S., & Kim, J. T. (2022). Straight-tip guidewire versus J-tip guidewire for central venous catheterisation in neonates and small infants: A randomised controlled trial. European journal of anaesthesiology, 39(8), 656–661. https://doi.org/10.1097/EJA.0000000000001695
Urimoto, G., Suzuki, T., Matsuda, M., Ito, K., Orihashi, Y., & Suzuki, T. (2024). Effect of Back-Cut Point Needle Bevel Angle on Deterioration After Multiple Punctures in Central Vein Simulation. Medical devices (Auckland, N.Z.), 17, 89–95. https://doi.org/10.2147/MDER.S447188
Pepley DF, Yovanoff MA, Mirkin KA, et al. Integrating cadaver needle forces into a haptic robotic simulator. J Med Devices. 2018;12(1):0145011–0145015. doi: 10.1115/1.4038562
Tanabe, H., Kawasaki, M., Ueda, T., Yokota, T., Zushi, Y., Murayama, R., Abe-Doi, M., & Sanada, H. (2020). A short bevel needle with a very thin tip improves vein puncture performance of peripheral intravenous catheters: An experimental study. The journal of vascular access, 21(6), 969–976. https://doi.org/10.1177/1129729820920108
Abe-Doi, M., Murayama, R., Komiyama, C., Tateishi, R., & Sanada, H. (2023). Effectiveness of ultrasonography for peripheral catheter insertion and catheter failure prevention in visible and palpable veins. The journal of vascular access, 24(1), 14–21. https://doi.org/10.1177/11297298211022078
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 M NAZIR , S ULLAH , Y SALEEM , S RAZIQ
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.