ENTOMOPATHOGENIC FUNGI A NEED OF HOUR IN MANAGEMENT OF BACTROCERA ZONATA; CHALLENGES AND OPPORTUNITIES

Authors

  • U SHARIF Institute of Plant Protection, Muhammad Nawaz Shareef University of Agriculture Multan, Pakistan
  • MA QAYYUM Institute of Plant Protection, Muhammad Nawaz Shareef University of Agriculture Multan, Pakistan
  • A HAMEED Institute of Plant Protection, Muhammad Nawaz Shareef University of Agriculture Multan, Pakistan
  • S ANJUM Institute of Botany, Faculty of Life Sciences, University of the Punjab, Lahore, 54590, Pakistan
  • U NAEEM-ULLAH Institute of Plant Protection, Muhammad Nawaz Shareef University of Agriculture Multan, Pakistan
  • M ISHTIAQ Institute of Plant Protection, Muhammad Nawaz Shareef University of Agriculture Multan, Pakistan
  • H TAHA Institute of Plant Protection, Muhammad Nawaz Shareef University of Agriculture Multan, Pakistan

DOI:

https://doi.org/10.54112/bcsrj.v2024i1.1050

Keywords:

Fruit fly, Entomopathogenic fungi, Management, Enzymes, Proteins

Abstract

The fruit flies (Diptera: Tephritidae) are polyphagous insect pests. Different methods are used to control this destructive pest including physical, chemical, genetic, and biological control. Biological control comprises predators, parasitoids, and pathogens. Now a day’s use of Entomopathogens is increasing very rapidly. Entomopathogenic fungi are one of the potential eco-friendly pest management alternatives to conventional pesticides. The most important Entomopathogenic fungi include Beauveria bassiana and Metarhizium anisopliae. These fungi have a specific set of characteristics including cuticle-degrading enzymes, toxins, and proteins which make them an excellent alternative to chemical control in insect pest management. Fungi generate a range of degrading enzymes to assist break down the insect cuticle and then emit poisonous secondary metabolites that aid the fungal invasion of the hemolymph. These degrading enzymes and other metabolites can be extracted and used as biopesticides against fruit flies. These biomolecules have great potential to be an alternative to synthetic chemical pesticides.

Downloads

Download data is not yet available.

References

Abdel-Galil, F.A., M.A. Amro, D.S. Mohamed and E.M. El-Kousy. 2019. The Potential Effects of Entomopathogenic Fungus, Beauveria bassiana (Bals.-Criv.) Vuill. on Certain Genera of Fruit Flies (Diptera: Tephritidae) Under Laboratory Conditions. J. Basic Appl. Mycol. 10:1-7.

Abdul Qayyum, M., H. Bilal, H. Ali, H. Raza and M. Wajid. 2021. Factors Affecting the Epizootics of Entomopathogenic Fungi-A Review. J. Environ. Manage.8: 5.

Acheampong, M. A., M. P. Hill, S. D. Moore and C. A. Coombes. 2020. UV sensitivity of Beauveria bassiana and Metarhizium anisopliae isolates under investigation as potential biological control agents in South African citrus orchards. Fungal Biol., 124: 304-310.

Agrawal, Y., I. Khatri, S. Subramanian and B.D. Shenoy. 2015. Genome sequence, comparative analysis, and evolutionary insights into chitinases of entomopathogenic fungus Hirsutella thompsonii. Gen. Biol. Evo. 7:916-930.

Aguilar-Marcelino, L., P. Mendoza-de-Gives, L.K.T. Al-Ani, L.K.T.M. López-Arellano, O. Gómez-Rodríguez, E. Villar-Luna and D.E. Reyes-Guerrero. 2020. Using molecular techniques applied to beneficial microorganisms as biotechnological tools for controlling agricultural plant pathogens and pest. In Molecular Aspects of Plant Beneficial Microbes in Agriculture Academic Press. pp. 333-349.

Al-Eryan, M. A. S., El-Minshawy, A. M., & Awad, A. I. (2018). Suppression program of the peach fruit fly, Bactrocera zonata (Saunders)(Diptera: Tephritidae) depend on male annihilation and bait application techniques in northern coast of Egypt. Acta Scientific Agriculture (ISSN: 2581-365X), 2(8).

Allsup, C. M., I. George and R. A. Lankau. 2023. Shifting microbial communities can enhance tree tolerance to changing climates. Sci. 380: 835-840.

Alves, E.A., S.T. Silvana, V. Marcus, Z.L. Giovani, K.C. Raquel and M.A. Mazutti. 2020. Process development to obtain a cocktail containing cell-wall degrading enzymes with insecticidal activity from Beauveria bassiana. Biochem. Engin. J. 107484.

Amobonye, A., P. Bhagwat, A. Pandey, S. Singh and S. Pillai. 2020. Biotechnological potential of Beauveria bassiana as a source of novel biocatalysts and metabolites. Critical Rev. Biotechn. 40:1019-1034

Anggraini, N., S. Suhartono, A. Alfizar, H. Husni, S. Rusdiana, F. Fauziah and S. Syaukani. 2021. Growth of entomopathogenic fungi colonies Metarhizium anisopliae (Metchnikoff) Sorokin enriched with termite juice. In IOP Conference Series: Earth Envir. Sci. 667: 012084.

Anwar, W., M.A. Javed, A.A. Shahid, K. Nawaz, A. Akhter, M.Z. Ur Rehman and M.S. Haider. 2019. Chitinase genes from Metarhizium anisopliae for the control of whitefly in cotton. Royal Society Open Sci. 6:190412.

Ashfaq, Muhammad, et al. "LOSS ASSESSMENT AND MANAGEMENT OF Bactrocera zonata (DIPTERA: TEPHRITIDAE) IN CITRUS ORCHARDS." Pakistan Journal of Agricultural Sciences 57.2 (2020).

Ayaovi, A., N. G. Merid, S. A. Komivi, S. Sevgan and M. Daniel. 2021. Infection of the Stable Fly, Stomoxys calcitrans, L. 1758 (Diptera: Muscidae) by the Entomopathogenic Fungi Metarhizium anisopliae (Hypocreales: Clavicipitaceae) Negatively Affects Its Survival, Feeding Propensity, Fecundity, Fertility, and Fitness Parameters.

Ayudya, D.R., S. Herlinda and S. Suwandi. 2019. Insecticidal activity of culture filtrates from liquid medium of Beauveria bassiana isolates from South Sumatra (Indonesia) wetland soil against larvae of Spodoptera litura. Biodiversitas J. Biol. Div. 20:2101-2109.

Azumi, M., K. Ishidoh, H. Kinoshita, T. Nihira, F. Ihara and T. Fuji. 2008. Aurovertins F-H from the entomopathogenic fungus Metarhizium anisopliae. J. Nat. Prod. 71:278–80

Bagheri, Abdoolnabi, et al. "Efficacy of methyl eugenol bait traps for controlling the mango fruit fly Bactrocera zonata (Diptera: Tephritidae)." Journal of Crop Protection 6.2 (2017): 181-189.

Bahadur, A.B. 2018. Entomopathogens: role of insect pest management in crops. Trend. Horti. 1:1-9.

Bajaj, Kavita, and Sandeep Singh. "Performance of different shapes of traps in capturing Bactrocera spp.(Diptera: Tephritidae) in peach and pear orchards." Pest Management in Horticultural Ecosystems 23.1 (2017): 7-11.

Behle, R., and T. Birthisel. 2023. Formulations of entomopathogens as bioinsecticides. In Mass production of beneficial organisms (pp. 407-429). Academic Press.

Beris, E. I., D.P. Papachristos, A. Fytrou. S.A. Antonatos and D.C. Kontodimas. 2013. Pathogenicity of three entomopathogenic fungi on pupae and adults of the Mediterranean fruit fly, Ceratitis capitata (Diptera: Tephritidae). J. Pest Sci. 86:275-284.

Bhanu Prakash, G.V.S., V. Padmaja, S.K. Jami and P.B. Kirti. 2012. Expression of chitinase genes of Metarhizium anisopliae isolates in lepidopteran pests and on synthetic media. J. Basic Microbiol. 52:628-635.

Biedermann, P.H. and F.E. Vega. 2020. Ecology and evolution of insect–fungus mutualisms. Ann. Rev. Entomol. 65:431-455.

Binyameen, M., Hamid, A., Afzal, I., Sajjad, M., Azeem, M., Zaka, S. M., ... & Schlyter, F. (2021). Role of fruit volatiles of different guava varieties in attraction and oviposition behaviors of peach fruit fly, Bactrocera zonata Saunders. Arthropod-Plant Interactions, 15(1), 95-106.

Bischoff, J.F., S.A. Rehner and R.A. Humber. 2009. A multilocus phylogeny of the Metarhizium anisopliae lineage. Mycologia. 101:512-530.

Björkman, M., I. Klingen, A. N. Birch, A. M. Bones, T. J. Bruce, T. J. Johansen and D. Stewart. 2011. Phytochemicals of Brassicaceae in plant protection and human health–Influences of climate, environment and agronomic practice. Phytochem.72: 538-556.

Borisade, O. A., and N. Magan. 2014. Growth and sporulation of entomopathogenic Beauveria bassiana, Metarhizium anisopliae, Isaria farinosa and Isaria fumosorosea strains in relation to water activity and temperature interactions. Biocontrol Sci. Technol., 24: 999-1011.

Braga, G. U., D. E. Rangel, E. K. Fernandes, S. D. Flint and D. W. Roberts. 2015. Molecular and physiological effects of environmental UV radiation on fungal conidia. Curr. Genet., 61: 405-425.

Brancini, G. T., J. E. Hallsworth, L. M. Corrochano and G. U. Braga. 2022. Photobiology of the keystone genus Metarhizium. J. Photochem. Photobiol. B, Biol., 226: 112374.

Brandt, M. L. (2022). The fungal endophyte Metarhizium brunneum: Possible multifunctional plant promoter in sustainable agriculture (Doctoral dissertation, Hochschule Rhein-Waal).

Brunner-Mendoza, C., M.D.R. Reyes-Montes, S. Moonjely, M.J. Bidochka and C. Toriello. 2019. A review on the genus Metarhizium as an entomopathogenic microbial biocontrol agent with emphasis on its use and utility in Mexico. Biocont. Sci. Techn. 29:83-102.

Bueno-Pallero, F. Á., R. Blanco-Pérez, I. Vicente-Díez, J. A. Rodríguez Martín, L. Dionísio and R. Campos-Herrera. 2020. Patterns of occurrence and activity of entomopathogenic fungi in the Algarve (Portugal) using different isolation methods. Insects.11: 352.

Bugti, G.A., B. Wang, S.A. Memon, G. Khaliq and M.A. Jaffar. 2020. Entomopathogenic fungi: factors involved in successful microbial control of insect pests. J. Entomol. 17:74-83.

Butt. T. M., C. J. Coates, I. M. Dubovskiy and N.A. Ratcliffe. 2016. Entomopathogenic fungi: new insights into host–pathogen interactions. Gen. Mol. Biol. Entomopath. Fungi. 94:307–364.

Cafarchia, C., R. Pellegrino, V. Romano, M. Friuli, C. Demitri, M. Pombi and D. Otranto. 2022. Delivery and effectiveness of entomopathogenic fungi for mosquito and tick control: Current knowledge and research challenges. Acta Trop.: 106627.

Carollo, C.A., A.L.A. Calil, L.A. Schiave, T. Guaratini, D.W. Roberts and N. Lopes. 2010. Fungal tyrosine betaine, a novel secondary metabolite from conidia of entomopathogenic Metarhizium spp. fungi. Fungal Biol. 114:473–80

Cecílio, P., A. Cordeiro-da-Silva and F. Oliveira. 2022. Sand flies: Basic information on the vectors of leishmaniasis and their interactions with Leishmania parasites. Commun. Biol. 5: 305.

Chergui, S., K. Boudjemaa, A. Benzehra and I. Karaca. 2020. Pathogenicity of indigenous Beauveria bassiana (Balsamo) against Ceratitis capitata Wiedemann (Diptera: Tephritidae) under laboratory conditions. Egyptian J. Biol. Pest Cont. 30:1-7.

Choudhary, Jaipal Singh, et al. "Predicting the population growth potential of Bactrocera zonata (Saunders)(Diptera: Tephritidae) using temperature development growth models and their validation in fluctuating temperature condition." Phytoparasitica 48.1 (2020): 1-13.

Cito, A., G. Mazza, A. Strangi, C. Benvenuti, G.P. Barzanti, E. Dreassi and P.F. Roversi. 2014. Characterization and comparison of Metarhizium strains isolated from Rhynchophorus ferrugineus. FEMS Microbiol. Lett. 355:108-115.

Confortin, T.C., S.S. Spannemberg, I. Todero, L. Luft, T. Brun, E.A. Alves and M. Mazutti. 2019. Microbial Enzymes as Control Agents of Diseases and Pests in Organic Agriculture. New and Future Develop. Microb. Biotech. Bioeng. 321-332.

Cory, J. S., and J. D. Ericsson. 2010. Fungal entomopathogens in a tritrophic context. The ecology of fungal entomopathogens, 75-88.

Cours, J., C. Bouget, N. Barsoum, J. Horák, E. Le Souchu, A. B. Leverkus and A. Sallé. 2023. Surviving in Changing Forests: Abiotic Disturbance Legacy Effects on Arthropod Communities of Temperate Forests. Curr. For. Rep., 1-30.

Cristina, P. and S. Gheorghe. 2017. The role of hydrolytic enzymes produced by entomopathogenic fungi in pathogenesis of insects. Mini review. Romanian J. Plant Prot. 10:2248-2248.

Cui, J., Z. Tan and H. Chen. 2012. Pathogenicity of Beauveria bassiana to Spodoptera exigua larvae at different temperature and humidity. Acta. Agri. Jiangxi. 24:41-43.

Dalmas, C.A., and S.D. Koutroubas. 2018. Current status and recent developments in biopesticide use. Agriculture 8:13.

Dannon, H. F., A. E. Dannon, O. K. Douro-Kpindou, A. V. Zinsou, A. T. Houndete, J. Toffa-Mehinto and M. Tamò. 2020. Toward the efficient use of Beauveria bassiana in integrated cotton insect pest management. J. Cotton Res., 3: 1-21.

Dar, S.A., B.A. Rather and A.A. Kandoo. 2017. Insect pest management by entomopathogenic fungi. J. Entomol. Zool. Stud. 5:1185-1190.

Dara, S. K. (2019). Interactions of entomopathogens with other pest management options. In Microbes for Sustainable Insect Pest Management (pp. 299-316). Springer, Cham.

Darwish, A. A. "Relative susceptibility of some fruits to the Mediterranean fruit fly, Ceratitis capitata (Wiedemann) and peach fruit fly, Bactrocera zonata (Saunders)(Diptera: Tephritidae) in Egypt." Journal of Entomology and Zoology Studies 4.4 (2016): 42-48.

Darwish, D.Y., M.M. Rizk, F.A. Abdel-Galil and S.A. Temerak. 2014. Seasonal population trend of the peach fruit fly (PFF), Bactrocera zonata (Saunders) (Diptera: Tephritidae) in Assiut, northern upper Egypt. Arch. Phytopath. Plant Prot. 47:1158–1165.

Das, Umesh, Supriya Okram, and S. K. K. S. Jha. "Species diversity and monitoring of population dynamics of two species of Bactrocera (B. dorsalis, B. zonata) through methyl eugenol traps at lower gangetic alluvium of West Bengal." Journal of Entomology and Zoology Studies 5.4 (2017): 372-376.

De la Cruz Quiroz, R., J.J.C. Maldonado, M.D.J.R. Alanis, J.A. Torres and R.P. Saldívar, 2019. Fungi-based biopesticides: shelf-life preservation technologies used in commercial products. J. Pest. Sci. 92:1003-1015.

De Lerma Barbaro, A., M.B. Gariboldi, M. Mastore, M.F. Brivio and S. Giovannardi. 2019. In Vivo Effects of a pro-PO system Inhibitor on the phagocytosis of Xenorhabdus nematophila in Galleria mellonella Larvae. Insects. 10:263.

Delrio, G. and A. Cocco. 2012. The Peach Fruit Fly, Bactrocera Zonata: A Major Threat For Mediterranean Fruit Crops?. Acta. Horticul. 940:557-566.

Dhawan, M. and N. Joshi. 2017. Enzymatic comparison and mortality of Beauveria bassiana against cabbage caterpillar Pieris brassicae LINN. Brazilian J. Microbiol. 48:522-529.

Dias, N.P., M.J. Zotti, P. Montoya, I.R. Carvalho and D.E. Nava. 2018. Fruit fly management research: A systematic review of monitoring and control tactics in the world. Crop Prot. 112:187-200.

Dias, V.S., G.J. Hallman, O.Y. Martínez-Barrera, N.V. Hurtado, A.A. Cardoso, A.G. Parker and S.W. Myers. 2020. Modified Atmosphere Does Not Reduce the Efficacy of Phytosanitary Irradiation Doses Recommended for Tephritid Fruit Flies. Insects. 11:371.

Dionisio, G., P. Kryger and T. Steenberg. 2016. Label-free differential proteomics and quantification of exoenzymes from isolates of the entomopathogenic fungus Beauveria bassiana. Insects. 7:54.

Doucet, D. and A. Retnakaran. 2012. Insect chitin: metabolism, genomics and pest management. Advan. Insect Physiol. 43:437-511.

Driver, F., R.J. Milner and J.W.H. Trueman. 2000. A taxonomic revision of Metarhizium based on sequence analysis of ribosomal DNA. Mycol. Res. 104:135-151.

Drobnjaković, T., M. Prijović, S. Milenković and D. Marčić. 2019. Sublethal effects of a Beauveria bassiana-based mycopesticide on Dutch and Serbian populations of Encarsia formosa (Hymenoptera: Aphelinidae). Biocont. Sci. Techn. 29:991-1008.

Dudley, E., M. Yousef, Y. Wang and W.J. Griffiths. 2010. Targeted metabolomics and mass spectrometry. Adv.Protein Chem. Struct. Biol. 80:45-83.

Elkhateeb, W.A., K.M. Mousa, M.O. ELnahas and G.M. Daba. 2021. Fungi against insects and contrariwise as biological control models. Egyptian J. Biol. Pest Cont. 31:1-9.

Escudero-Pérez, B., A. Lalande, C. Mathieu and P. Lawrence. 2023. Host–Pathogen interactions influencing zoonotic spillover potential and transmission in humans. Virus. 15: 599.

European Food Safety Authority (EFSA), et al. "Pest survey card on Bactrocera zonata." EFSA Supporting Publications 18.1 (2021): 1999E.

FAO/IAEA, 2021. Available on the web with updates at http://www-naweb.iaea.org/nafa/ipc/public/ipc-peach-fruit-fly-bactrocera-zonata.html

Fernandes, É.K., D.E. Rangel, G.U. Braga and D.W. Roberts. 2015. Tolerance of entomopathogenic fungi to ultraviolet radiation: a review on screening of strainsand their formulation. Curr. Gen. 61:427-440.

Fernandes, É.K., I.C. Angelo, D.E. Rangel, T.C. Bahiense, A.M. Moraes, D.W. Roberts and V.R. Bittencourt. 2011. An intensive search for promising fungal biological control agents of ticks, particularly Rhipicephalus microplus. Vet. Parasit. 182:307-318.

Gange, A.C., J. Koricheva, A.F. Currie, L.R. Jaber and S. Vidal. 2019. Meta‐analysis of the role of entomopathogenic and unspecialized fungal endophytes as plant bodyguards. New Phytol. 223:2002-2010.

Geoffry, K. and R.N. Achur. 2018. Screening and production of lipase from fungal organisms. Biocat. Agri. Biotech. 14:241-253.

Golo, P.S., D.R. Gardner, M.M. Grilley, J.Y. Takemoto, S.B. Krasnoff, M.S. Pires and D.W. Roberts. 2014. Production of destruxins from Metarhizium spp. fungi in artificial medium and in endophytically colonized cowpea plants. PloS one. 9(8):e104946.

Gonzales, J. C., G. T. Brancini, G. B. Rodrigues, G. J. Silva-Junior, L. Bachmann, M. Wainwright and G. U. Braga. 2017. Photodynamic inactivation of conidia of the fungus Colletotrichum abscissum on Citrus sinensis plants with methylene blue under solar radiation. J. Photochem. Photobiol. B, Biol., 176: 54-61.

González-Mas, N., L. Ortega-Garcia, I. Garrido-Jurado, O. Dembilio, J. A. Jaques and E. Quesada-Moraga. 2019. Which came first: The disease or the pest? Is there a host mediated spread of Beauveria bassiana (Ascomycota: Hypocreales) by invasive palm pests?. J. Invertebr. Pathol. 162: 26-42.

Graham, R. I., J. M. Deacutis, T. Pulpitel, F. Ponton, S. J. Simpson and K. Wilson. 2014. Locusts increase carbohydrate consumption to protect against a fungal biopesticides. J. Insect Physiol.69: 27-34.

Grizanova, E. V., C. J. Coates, I. M. Dubovskiy and T. M. Butt. 2019. Metarhizium brunneum infection dynamics differ at the cuticle interface of susceptible and tolerant morphs of Galleria mellonella. Virul.10: 999-1012.

Gupta, V.K. and V. Jindal. 2014. Biotechnological approaches for insect pest management. In Integrated Pest Management (pp. 311-335). Academic Press.

Gurr, G. M., Z. Lu, X. Zheng, H. Xu, P. Zhu, G. Chen, X. Yao, J. Cheng, Z. Zhu and J.L. Catindig. 2017. Multi-country evidence that crop diversification promotes ecological intensification of agriculture. Nat. Plants 2:16014.

Hajek, A.E. and N.V. Meyling. 2017. Fungi. In Ecology of Invertebrate Diseases; Hajek, A.E., Shapiro-Ilan, D.I., Eds. Wiley: Oxford, UK. pp. 327–377.

Halawa, S.M., E.F. El-Khiat, R.A. El-Hosary, M. Ismail and A.M.Z. Mosallam. 2019. Comparative Toxicity of Certain Insecticides against Two Species of Fruit Flies. J. Plant Prot. Pathol. 10:269-274.

Hamid, R., M.A. Khan, M. Ahmad, M.M. Ahmad, M.Z. Abdin, J. Musarrat and S. Javed. 2013. Chitinases: an update. J. Pharm. Bioallied. Sci. 5:21.

Harrouard, J., E. Pilard, C. Miot-Sertier, L. Pouget, P. Marullo, G. Ferrari and W. Albertin. 2023. Evaluating the influence of operational parameters of pulsed light on wine related yeasts: focus on inter-and intra-specific variability sensitivity. Food Microbiol., 109: 104121.

Hayakawa, Y., D. Kato, K. Kamiya, C. Minakuchi and K. Miura. 2017. Chitin synthase 1 gene is crucial to antifungal host defense of the model beetle, Tribolium castaneum. J. Invert. Pathol. 143:26-34.

Hountondji, F. C., M. W. Sabelis, R. Hanna and A. Janssen. 2005. Herbivore-induced plant volatiles trigger sporulation in entomopathogenic fungi: the case of Neozygites tanajoae infecting the cassava green mite. J. Chem. Ecol., 31: 1003-1021.

Idris, A.L., X. Fan, M.H. Muhammad, Y. Guo, X. Guan and T. Huang. 2020. Ecologically controlling insect and mite pests of tea plants with microbial pesticides: a review. Archives Microbial. 202:1275–1284.

Jaronski S. 2015. Evaluation of Novel Entomopathogenic Fungi for Grasshopper Management. Crop Protection and Quarantine. 16:1-2

Jaronski, S. T. 2010. Ecological factors in the inundative use of fungal entomopathogens. BioControl. 55: 159-185.

Jaronski, S.T. 2009. Ecological factors in the inundative use of fungal entomopathogens. BioControl. 55:159–185.

Jaronski, S.T. 2010. Ecological factors in the inundative use of fungal entomopathogens. BioControl. 55:159-185.

Jiang, D., X. Lu, L. Zhang and F. Tang. 2023. Enhancement of Pathogen Toxicity by Feeding Reticulitermes chinensis Snyder Sonicated Bacteria Expressing Double-Stranded RNA That Interferes with Olfaction. Insects.14: 140.

Kariithi, H. M., X. Yao, F. Yu, P. E. Teal, C. P. Verhoeven and D. G. Boucias. 2017. Responses of the housefly, Musca domestica, to the hytrosavirus replication: impacts on host's vitellogenesis and immunity. Front Microbiol., 8: 583.

Khalil, A.A., S.M. Abolmaaty, M.K. Hassanein, M.M. El-Mtewally and S.A. Moustafa. 2010. Degree-days units and expected generation numbers of peach fruit fly Bactrocera zonata (Saunders) (Diptera: Tephritidae) under climate change in. Egyptian Academic J. Biol. Sci. 3:11-19.

Khan, R. A., & Naveed, M. (2017). Evaluation of comparative toxicity of different insecticides against fruit fly, Bactrocera zonata Saunders (Diptera: Tephritidae). Pakistan Journal of Zoology, 49(1).

Khidr, A.A., F.M. Fahim and A.A. Taman. 2019. Risk Assessment of Recommended Pesticides in Non-Target Organisms In Egyptian Agro-Ecosystems. Egyptian. Acad. J. Biol. Sci. F. Toxic. Pest. Cont. 11:1-9.

Krasnoff. S.B., C.H. Sommers, Y.S. Moon, B.G.G. Donzelli, J.D. Vandenberg and A.C.L. Churchill. 2006. Production of mutagenic metabolites by Metarhizium anisopliae. J. Agric. Food Chem. 54:7083–8.

Krasnoff. S.B., I. Keresztes, R.E. Gillilan, D.M.E. Szebenyi, B.G.G. Donzelli, A.C.L. Churchill. 2007. Serinocyclins A and B, cyclic heptapeptides from Metarhizium anisopliae. J. Nat. Prod. 70:1919–24

Kryukov, V. Y., O. N. Yaroslavtseva, E. A. Elisaphenko, P. V. Mitkovets, G. R. Lednev, B. A. Duisembekov and V. V. Glupov. 2012. Change in the temperature preferences of Beauveria bassiana sensu lato isolates in the latitude gradient of Siberia and Kazakhstan. Microbiol., 81: 453-459.

Kumar, K.K., J. Sridhar, R.K. Murali-Baskaran, S. Senthil-Nathan, P. Kaushal, S.K. Dara & S. Arthurs. 2019. Microbial biopesticides for insect pest management in India: Current status and future prospects. J. Invert. Pathol.165:74-81.

Kumari, D., L. Duhan, R. Manoharlal, G. S. Prasad, M. M. Hanafiah and R. Pasrija. 2023. Green Technologies for Crop-Pest Control. Green Chem. Agri. Food Prod: 29.

Li, Z., C. Li, B. Huang and M. Fan. 2001. Discovery and demonstration of the teleomorph of Beauveria bassiana (Bals.) Vuill., an important entomogenous fungus. Chinese Sci. Bullet. 46:751-753.

Litwin, A., M. Nowak and S. Różalska. 2020. Entomopathogenic fungi: unconventional applications. Rev. Environ. Sci. Biotechnol, 19: 23-42.

Liu, B. L., & Tzeng, Y. M. (2012). Development and applications of destruxins: A review. Biotechnology advances, 30(6), 1242-1254.

Lu, H. L., and R. S. Leger. 2016. Insect immunity to entomopathogenic fungi. Adv. Genet., 94, 251-285.

Mahmoud, F.M. 2009. Susceptibility of the peach fruit fly Bactrocera zonata (Saunders) (Diptera: Tephritidae) to three entomopathogenic fungi. Egypt. J. Boil. Pest Cont. 19:169-175.

Mahmoud, M.E., S.A. Mohamed, S. Ndlela, A.G. Azrag, F.M. Khamis, M.A. Bashir and S. Ekesi. 2020. Distribution, relative abundance, and level of infestation of the invasive peach fruit fly Bactrocera zonata (Saunders) (Diptera: Tephritidae) and its associated natural enemies in Sudan. Phytoparasitica. 48:589-605.

Maina, U.M., I.B. Galadima, F.M. Gambo and D. Zakaria. 2018. A review on the use of entomopathogenic fungi in the management of insect pests of field crops. J. Entomol. Zool. Stud. 6:27-32.

Mannino, M.C., C. Huarte-Bonnet, B. Davyt-Colo and N. Pedrini. 2019. Is the Insect Cuticle the only Entry Gate for Fungal Infection? Insights into Alternative Modes of Action of Entomopathogenic Fungi. J. Fung. 5:33.

Mantzoukas, S., F. Kitsiou, D. Natsiopoulos and P. A. Eliopoulos. 2022. Entomopathogenic fungi: interactions and applications. Encyclop. 2: 646-656.

Marciano, A. F., G. M. Mascarin, R. F. R. Franco, P. S. Golo, S. T. Jaronski, E. K. K. Fernandes and V. R. E. P. Bittencourt. 2021. Innovative granular formulation of Metarhizium robertsii microsclerotia and blastospores for cattle tick control. Sci. Rep., 11: 1-11.

Marrone, P.G. 2014. The market and potential for biopesticides. In Biopesticides: state of the art and future opportunities. American Chemical Society. pp. 245-258.

Mathulwe, L.L., K. Jacobs, A.P. Malan, K. Birkhofer, M.F. Addison and P. Addison. 2021. Characterisation of Metarhizium majus (Hypocreales: Clavicipitaceae) isolated from the Western Cape Province, South Africa. PloS one. 16:e0240955.

McGuire, M. R., W. J. Connick and P. C. Quimby. 2023. Formulation of microbial pesticides. In Controlled-release delivery systems for pesticides (pp. 173-193). Routledge.

Medo, J. and Ľ. Cagáň. 2011. Factors affecting the occurrence of entomopathogenic fungi in soils of Slovakia as revealed using two methods. Biol. Cont. 59:200-208.

Mehta, A., U. Bodh and R. Gupta. 2017. Fungal lipases: a review. J. Biotech. Res. 8:58-77.

Mohamed, H. O., and S. A. Shairra. 2023. Pathogenicity of entomopathogenic nematodes against the new invasive fall armyworm, Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae). Egypt. J. Biol. Pest. Control.33: 1-10.

Moharram, A.M., F.A. Abdel-Galil and W.M.M. Hafez. 2021. On the enzymes’ actions of entomopathogenic fungi against certain indigenous and invasive insect pests. Egyptian J. Biol. Pest Cont. 31:1-9.

Montoya, P., S. Flores, S. Campos, P. Liedo and J. Toledo. 2020. Simultaneous use of SIT plus disseminator devices of Beauveria bassiana enhances horizontal transmission in Anastrepha ludens. J. Appl. Entomol. 144:509-518.

Muller-Kogler, E. 1965. Fungal diseases in insects. Application for biological pest control and basics of insect mycology. Berlin: P. PareyVerlag. pp. 444.

Mwamburi, L. A., M. D. Laing and R. M. Miller. 2015. Effect of surfactants and temperature on germination and vegetative growth of Beauveria bassiana. Braz. J. Microbiol. 46: 67-74.

Mwamburi, L.A. 2020. Beneficial Microbes in Agro-Ecology. Beauveria. (Ch. 37):727–748.

Namasivayam, S.K.R., R. Aarthi and P. Anbazhahan. 2015. Studies on factors influencing the viability of entomopathogenic fungi Metarhizium anisopliae in soil adapting culture dependent method. J. Biopest. 8:23-27.

Nascimento, É., S. H. Da Silva, E. dos Reis Marques, D. W. Roberts and G. U. Braga. 2010. Quantification of cyclobutane pyrimidine dimers induced by UVB radiation in conidia of the fungi Aspergillus fumigatus, Aspergillus nidulans, Metarhizium acridum and Metarhizium robertsii. Photochem. Photobiol., 86: 1259-1266.

Niassy, S., S. Subramanian, S. Ekesi, J.L. Bargul, J. Villinger and N.K. Maniania. 2013. Use of Metarhizium anisopliae Chitinase Genes for Genotyping and Virulence Characterization. BioMed Res. Inter. 2013:465213

Nicoletti, R., A. Andolfi, A. Becchimanzi and M. M. Salvatore. 2023. Anti-Insect Properties of Penicillium Secondary Metabolites. Microorganisms.11: 1302.

Oke, C. E., V. A. Ingham, C. A. Walling and S. E. Reece. 2022. Vector control: agents of selection on malaria parasites?. Trends Parasitol.

Olson, S. 2015. An analysis of the biopesticide market now and where it is going. Outlooks Pest Manag. 26:203–206

Onsongo, S. K., S. A. Mohamed, K. S. Akutse, B. M. Gichimu and T. Dubois. 2022. The Entomopathogenic Fungi Metarhizium anisopliae and Beauveria bassiana for Management of the Melon Fly Zeugodacus cucurbitae: Pathogenicity, Horizontal Transmission, and Compatability with Cuelure. Insects, 13: 859.

Ortiz-Urquiza A, Z. Luo and N.O. Keyhani. 2015. Improving mycoinsecticides for insect biological control. Appl. Micro. Bio. Tech. 99:1057-1068.

Ortiz-Urquiza, A and N.O. Keyhani. 2013. Action on the surface: entomopathogenic fungi versus the insect cuticle. Insects. 4:357-374.

Ortiz-Urquiza, A. and N.O. Keyhani. 2016. Molecular genetics of Beauveria bassiana infection of insects. Adv. Gen. 94:165-249.

Parray, J.A. and N. Shameem. 2019. Sustainable agriculture: Advances in plant metabolome and microbiome. Academic Press. pp. 181-229.

Pascoal, A., L.M. Estevinho, I.M. Martins and A.B. Choupina. 2018. Novel sources and functions of microbial lipases and their role in the infection mechanisms. Physiol. Molec. Plant Pathol. 104:119-126.

Patocka, J. 2016. Bioactive metabolites of entomopathogenic fungi Beauveria bassiana. Mil. Med. Sci. Lett. 85:80-88

Pedrini N. 2018. Molecular interactions between entomopathogenic fungi (Hypocreales) and their insect host: Perspectives from stressful cuticle and hemolymph battlefields and the potential of dual RNA sequencing for future studies. Fungal Biol. 122:538–545.

Peterson, R.K.D., L.G. Higley and L.P. Pedigo. 2018. Whatever happened to IPM? Am. Entomol. 64:146–150.

Petrisor, C. and G. Stoian. 2017. The Role of Hydrolytic Enzymes Produced By Entomopathogenic Fungi in Pathogenesis of Insects Mini Review. Romanian J. Plant Prot. 10:66-72.

Quesada-Moraga, E., N. González-Mas, M. Yousef-Yousef, I. Garrido-Jurado, and M. Fernández-Bravo. 2023. Key role of environmental competence in successful use of entomopathogenic fungi in microbial pest control. J. Pest Sci., 1-15.

Rafaluk-Mohr C., S. Wagner and G. Joop. 2018. Cryptic changes in immune response and fitness in Tribolium castaneum as a consequence of coevolution with Beauveria bassiana. J. Invert. Pathol. 152:1–7.

Rehner, S.A. and E. Buckley. 2005. A Beauveria phylogeny inferred from nuclear ITS and EF1-α sequences: evidence for cryptic diversification and links to Cordyceps teleomorphs. Mycologia. 97:84-98.

Rehner, S.A., A.M. Minnis, G.H. Sung, J.J. Luangsa-ard, L. Devotto R.A. Humber. 2011. Phylogeny and systematics of the anamorphic, entomopathogenic genus Beauveria. Mycologia. 1031055-1073.

Rezaei, R., L. Safa, C.A. Damalas and M.M. Ganjkhanloo. 2019. Drivers of farmers' intention to use integrated pest management: Integrating theory of planned behavior and norm activation model. J. Envir. Manag. 236:328-339.

Rossouw, S., L. L. Mathulwe, A. P. Malan and N. F. Stokwe. 2023. Effect of visible light and ultraviolet light on the pathogenicity of entomopathogenic fungi to false codling moth, Thaumatotibia leucotreta (Lepidoptera: Tortricidae) larvae. Afr. Entomol. 31.

Ruiu, L. 2018. Microbial biopesticides in agroecosystems. Agronomy. 8:235.

Rustiguel, C.B., M. Fernández-Bravo, L.H.S. Guimarãesm and E. Quesada-Moraga. 2018. Different strategies to kill the host presented by Metarhizium anisopliae and Beauveria bassiana. Canadian J. Microbiol. 64:191-200.

Sain, S. K., D. Monga, R. Kumar, D. T. Nagrale, N. S. Hiremani and S. Kranthi. 2019. Compatibility of entomopathogenic fungi with insecticides and their efficacy for IPM of Bemisia tabaci in cotton. J. Pestic. Sci., 44: 97-105.

Sani, I., S. Jamian, S. I. Ismail, N. Saad, S. Abdullah, E. M. Hata and J. Jalinas. 2023. Effect of Temperature on Germination, Radial Growth, and Sporulation of the New Isolates of Metarhizium anisopliae and Their Virulence to Whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae). Sains Malays., 52: 467-476.

Schmid, F. 2015. Total Synthesis of (–)-Pyridovericin and Synthetic Studies towards Aetheramide B. University Basel, Doctoral dissertation.

Semenova, T.A., Y.E. Dunaevsky, G.A. Beljakova and M.A. Belozersky. 2020. Extracellular peptidases of insect-associated fungi and their possible use in biological control programs and as pathogenicity markers. Fung. Biol. 124:65-72.

Shang, J., G. Tang, M. Lu and C. Wang. 2022. Host and Environmental Sensing by Entomopathogenic Fungi to Infect Hosts. Curr. Clin. Microbiol. Rep: 1-6.

Shapiro-Ilan, D., S.P. Arthurs and L.A. Lacey. 2017. Microbial control of arthropod pests of orchards in temperate climates. Microb. Cont. Insect Mite Pests. 253-267.

Sharma, Isha, and Divender Gupta. "Morphometry of Bactrocera dorsalis and B. zonata on mango (Mangifera indica), guava (Psidium guajava) and peach (Prunus persica)." Journal of Entomology and Zoology Studiesi 6.4 (2018): 395-397.

Sharma, N., A. S. Bhandari and P. K. Shukla. 2020. Entomopathogenic Biopesticides: Opportunities and Challenges. Bio-management of Postharvest Diseases and Mycotoxigenic Fungi, 121-144.

Sharma, R. and P. Sharma. 2021. Fungal entomopathogens: a systematic review. Egypt J. Biol. Pest Cont. 31:57

Shaurub, E. S. H. (2022). Review of entomopathogenic fungi and nematodes as biological control agents of tephritid fruit flies: current status and a future vision. Entomologia Experimentalis et Applicata.

Sookar, P., S. Bhagwant and M.N. Allymamod. 2014a. Effect of Metarhizium anisopliae on the fertility and fecundity of two species of fruit flies and horizontal transmission of mycotic infection. J. Insect Sci. 14:100.

Srei, N., R. Lavallée and C. Guertin. 2019. Horizontal transmission of the entomopathogenic fungal isolate INRS-242 of Beauveria bassiana in emerald ash borer, Agrilus planipennis Fairmaire. BioRxiv. 532838.

St Leger, R.J. and C. Wang. 2010 Genetic engineering of fungal biocontrol agents to achieve efficacy against insect pests. Appl. Microbiol. Biotechnol. 85:901–907

Steinhaus, E. A. Principles of Insect Pathology. 1949. McGraw New York.

Sutanto, K. D., M. Husain, K. G. Rasool, A. F. Malik, W. H. Al-Qahtani and A. S. Aldawood. 2022. Persistency of indigenous and exotic entomopathogenic fungi isolates under ultraviolet B (UV-B) irradiation to enhance field application efficacy and obtain sustainable control of the red palm weevil. Insects.13: 103.

Teder, T., and A. Kaasik. 2023. Early‐life food stress hits females harder than males in insects: A meta‐analysis of sex differences in environmental sensitivity. Ecol. Lett.

Ugwu, J.A. and V.M. Nwaokolo. 2020. Biocidal activity of selected botanicals and Beauveria bassiana on oriental fruit fly, Bactrocera dorsalis (Diptera; Tephritidae). J. Res. Forestry Wildlife Envir. 12:53-61.

Ulloa-Avellán, O., A. Calderón-Hernández, R. Rubí-Chacón and B. Vargas-Leitón. 2023. Aspergillus spp. Isolated from Lungs of Poultry (Gallus gallus) at the Mycology Laboratory, School of Veterinary Medicine, Universidad Nacional, Heredia, Costa Rica between 2008 and 2021 and Associated Factors. J. Fungi. 9: 58.

Urbaniak, M., L. Stępień and S. Uhlig. 2019. Evidence for naturally produced beauvericins containing N-Methyl-Tyrosine in hypocreales fungi. Toxins. 11:182.

Valero-Jiménez , C.A., H. Wiegers, B.J. Zwaan, C.J. Koenraadt and J.A. van Kan. 2016. Genes involved in virulence of the entomopathogenic fungus Beauveria bassiana. J. Invertebr. Pathol. 133:41-49.

Van Allen, B. G., F. Dillemuth, V. Dukic and B. D. Elderd. 2023. Viral transmission and infection prevalence in a cannibalistic host–pathogen system. Oecologia.1: 13.

Vashishtha, A., and G.K Meghwanshi. 2018. Fungi inhabiting in hypersaline conditions: an insight. In Fungi and their role in sustainable development: current perspectives. Springer, Singapore. pp. 449-465.

Verma, S., G.K. Meghwanshi and R. Kumar. 2021. Current perspectives for microbial lipases from extremophiles and metagenomics. Biochimie.182:23-36.

Vey A., R. Hoagland and T.M. Butt. 2001. Toxic Metabolites of Fungal Biocontrol Agents. In Butt, T. M., Jackson, C. and Magan, N. ed., Fungi as Biocontrol Agents: Progress, Problems and Potential, CAB International, Oxon. pp.311-345.

Wan, Q., G. Wen, Y. Cui, R. Cao, X. Xu, G. Wu and T. Huang. 2023. Occurrence and control of fungi in water: New challenges in biological risk and safety assurance. Sci. Total Environ., 860: 160536.

Wang, B., Q. Kang, Y. Lu, L. Bai and C. Wang. 2012. Unveiling the biosynthetic puzzle of destruxins in Metarhizium species. Proc. Natl. Acad. Sci. USA. 109:1287–1292.

Wang, J.J., W.W. Bai, W. Zhou, J. Liu, J. Chen, X.Y. Liu and Y.J. Wan. 2017. Transcriptomic analysis of two Beauveria bassiana strains grown on cuticle extracts of the silkworm uncovers their different metabolic response at early infection stage. J. Invert. Pathol. 145:45-54.

Wang, Q., B.J. Bosch, J.M. Vlak, M.M. van Oers, P.J. Rottier and J.W. van Lent. 2016. Budded baculovirus particle structure revisited. J. Invert. Pathol. 134:15-22.

Wang, Y., Q. Zhou, H. Zhang, L. Qin and B. Huang. 2021. Immunotranscriptome analysis of Plutella xylostella reveals differences in innate immune responses to low‐and high‐virulence Beauveria bassiana strain challenges. Pest Manag. Sci., 77: 1070-1080

Westerdahl, B. B., M. R. Khan, A. O. Nyström and I. Ahmad. 2023. Nematode problems in sugarcane and sugar beet and their sustainable management. In Nematode Diseases of Crops and their Sustainable Management (pp. 565-594). Academic Press.

Will, I., S. Linehan, D. G. Jenkins and C. de Bekker. 2023. Natural history and ecological effects on the establishment and fate of Florida carpenter ant cadavers infected by the parasitic manipulator Ophiocordyceps camponoti‐floridani. Funct. Ecol., 37: 886-899.

Wongwanich, Y., P. Cobelli, D. Boonchuay and T. Wangsomboondee. 2017. Development of thermotolerant isolates of Beauveria bassiana (Bals.-Criv.) Vuill. with ethyl methanesulfonate. J. Plant Prot. Res.

Wu, S., M.D. Toews, C. Oliveira-Hofman, R.W. Behle, A.M. Simmons and D.I. Shapiro-Ilan. 2020. Environmental Tolerance of Entomopathogenic Fungi: A New Strain of Cordyceps javanica Isolated from a Whitefly Epizootic Versus Commercial Fungal Strains. Insects. 11:711.

Xia, Y., C. Shi, Y. Li, X. Jiang, S. Ruan, X. Gao and L. Zhang. 2023. Effects of ambient temperature on mortality among elderly residents of Chengdu city in Southwest China, 2016–2020: a distributed-lag non-linear time series analysis. BMC Pub. Heal.23: 1-12.

Xu, D., M. Xue, Z. Shen, X. Jia, X. Hou, D. Lai and L. Zhou. 2021. Phytotoxic Secondary Metabolites from Fungi. Toxins. 13:261.

Xu, J., L. Zheng, M. Tan, H. Wu, S. Yan and D. Jiang. 2023. The susceptibility of Hyphantria cunea larvae to microbial pesticides Bacillus thuringiensis and Mamestra brassicae nuclear polyhedrosis virus under Cd stress. Pestic. Biochem. Physiol., 191: 105383.

Xu, Y., R. Orozco, E. M.K, Wijeratne, P. Espinosa-Artiles, A.A.L. Gunatilaka, S.P. Stock and L. Molnar. 2009. Biosynthesis of the cyclooligomer depsipeptide bassianolide, an insecticidal virulence factor of Beauveria bassiana. Fungi. Gen. Biol. 46:353-364.

Yang, F., Y. Wu, F. Dong, J. Tu, X. Li, Y. Dong and F. Xie. 2022. Current status and prospect of entomopathogenic fungi for controlling insect and mite pests in tea plantations. J. Appl. Entomol.146: 1041-1051.

Yee, W.L. 2020. Laboratory evaluation of CX-10282 containing Beauveria bassiana (Hypocreales: Cordycipitaceae) strain GHA against adult Rhagoletis indifferens (Diptera: Tephritidae). Phytoparasitica. 48:231–245

Yek, S. H., and U. G. Mueller. 2011. The metapleural gland of ants. Biol. Rev., 86: 774-791.

Yesmin, Farzana, et al. "Identification of larval salivary gland polytene chromosomes of the peach fruit fly, Bactrocera zonata (Saunders)(Diptera: Tephritidae)." Journal of Biological Control 33.3 (2019): 295-302.

Yin, Y., B. Chen, S. Song, B. Li, X. Yang and C. Wang. 2020. Production of diverse

beauveriolide analogs in closely related fungi: a rare case of fungal chemodiversity. Molec. Biol. Physiol. mSphere. 5:e00667-20

Zembrzuski, D., D. A. Woller, S. Jaronski, L. R. Black, K. C. Reuter, D. Grief and A. Cease. 2023. Understanding how diet and temperature affect survival and subsequent sporulation in a major rangeland grasshopper pest, Melanoplus sanguinipes, infected with the entomopathogenic fungus, Metarhizium robertsii. Biol. Control.:105268

Zhong, K., Z.C. Liu, J.L. Wang and X.S. Liu. 2017. The entomopathogenic fungus Nomuraea rileyi impairs cellular immunity of its host Helicoverpa armigera. Archives Insect Biochem. Physiol. 96:e21402.

Zhu, F., L. Lavine, S. O’Neal, M. Lavine, C. Foss and D. Walsh. 2016. Insecticide resistance and management strategies in urban ecosystems. Insects.7: 2.

Zibaee, A. and S. Ramzi. 2018. Cuticle-degrading proteases of entomopathogenic fungi: from biochemistry to biological performance. Archives Phytopathol. Plant Prot. 51:779-794.

Downloads

Published

2024-08-24

How to Cite

SHARIF, U., QAYYUM, M., HAMEED, A., ANJUM, S., NAEEM-ULLAH, U., ISHTIAQ, M., & TAHA, H. (2024). ENTOMOPATHOGENIC FUNGI A NEED OF HOUR IN MANAGEMENT OF BACTROCERA ZONATA; CHALLENGES AND OPPORTUNITIES. Biological and Clinical Sciences Research Journal, 2024(1), 1050. https://doi.org/10.54112/bcsrj.v2024i1.1050

Most read articles by the same author(s)

<< < 1 2 3