IN-SILICO CHARACTERIZATION OF HUMAN HER2 GENE TO PREDICT THE BREAST CANCER ASSOCIATED BIOMARKERS

Authors

  • F MUCCEE School of Biochemistry and Biotechnology, University of Punjab, Lahore 52254, Pakistan
  • F RAZZAQ Institute of Molecular Biology and Biotechnology, The University of Lahore, Pakistan
  • A KHATOON Institute of Botany, University of the Punjab, Lahore, Pakistan
  • K HAIDER Department of Zoology, Government College University, Lahore, Pakistan
  • AA KHAN Department of Biological Sciences, Virtual University of Pakistan

DOI:

https://doi.org/10.54112/bcsrj.v2023i1.629

Abstract

HER2 gene hyperactivation is responsible for the incidence of invasive breast cancer (BC). It leads to over expression of HER2 receptors in breast cells resulting in abnormal receptor dimerization and signal transduction cascade initiation. It ultimately causes uncontrolled proliferation of breast cells. Therefore, this is the most susceptible target gene for BC treatment. HER2 gene transcript with accession ID ENST00000269571.10 was selected for association analysis in present study. A total of ten single nucleotide polymorphisms (SNPs) of gene were analyzed using in-silico tools like CELLO, PROTPARAM, SOPMA, and SWISSMODEL. These tools helped in determining the effect of variants on sub-cellular localization, physiochemical properties, and secondary (2D) and tertiary (3D) structures of mutated proteins. Variants rs1249755832, rs769703068, rs1567913219, and rs1213602748 altered the localization of mutated proteins. SNPs rs1213602748, rs769703068, and rs1249755832 considerably changed the isoelectric point (pI), extinction coefficient, instability index, aliphatic index, and GRAVY. Variant rs769703068 caused a change in all four properties of the 2D structure, i.e., alpha helix, extended strand, beta-turn, and random coil. Polymorphisms that caused a significant deviation in 3D configuration were rs769703068, rs144434331, and rs146177313. These variants can be recommended as biomarkers for HER2+ BC cell diagnosis.

Downloads

Download data is not yet available.

References

Aertgeerts, K., Skene, R., Yano, J., Sang, B. C., Zou, H., Snell, G., Jennings, A., Iwamoto, K., Habuka, N., and Hirokawa, A. (2011). Structural analysis of the mechanism of inhibition and allosteric activation of the kinase domain of HER2 protein. Journal of Biological Chemistry 286, 18756-18765.

Babnigg, G., and Joachimiak, A. (2010). Predicting protein crystallization propensity from protein sequence. Journal of structural and functional genomics 11, 71-80.

Bai, X., Sun, P., Wang, X., Long, C., Liao, S., Dang, S., Zhuang, S., Du, Y., Zhang, X., and Li, N. (2023). Structure and dynamics of the EGFR/HER2 heterodimer. Cell Discovery 9, 18.

Cresti, N., Lee, J., Rourke, E., Televantou, D., Jamieson, D., Verrill, M., and Boddy, A. V. (2016). Genetic variants in the HER2 gene: Influence on HER2 overexpression and loss of heterozygosity in breast cancer. European Journal of Cancer 55, 27-37.

de la Peña, F. A., Novoa, S. A., Gregori, J. G., Cortijo, L. G., Carrasco, F. H., Martínez, M. T. M., Estévez, C. M., Stradella, A., Losada, M. J. V., and Ciruelos, E. (2023). SEOM-GEICAM-SOLTI clinical guidelines for early-stage breast cancer (2022). Clinical & Translational Oncology 25, 2647.

Furrer, D., Lemieux, J., Côté, M. A., Provencher, L., Laflamme, C., Barabé, F., Jacob, S., Michaud, A., and Diorio, C. (2016). Evaluation of human epidermal growth factor receptor 2 (HER2) single nucleotide polymorphisms (SNPs) in normal and breast tumor tissues and their link with breast cancer prognostic factors. The Breast 30, 191-196.

Gaibar, M., Beltrán, L., Romero-Lorca, A., Fernández-Santander, A., and Novillo, A. (2020). Somatic mutations in HER2 and implications for current treatment paradigms in HER2-positive breast cancer. Journal of Oncology 2020.

Gamage, D. G., Gunaratne, A., Periyannan, G. R., and Russell, T. G. (2019). Applicability of instability index for in vitro protein stability prediction. Protein and peptide letters 26, 339-347.

Han, W., Kang, D., Lee, J. E., Park, I. A., Choi, J. Y., Lee, K. M., Bae, J. Y., Kim, S., Shin, E. S., and Lee, J. E. (2005). A haplotype analysis of HER-2 gene polymorphisms: association with breast cancer risk, HER-2 protein expression in the tumor, and disease recurrence in Korea. Clinical cancer research 11, 4775-4778.

Irvin Jr, W., Muss, H. B., and Mayer, D. K. (2011). Symptom management in metastatic breast cancer. The oncologist 16, 1203-1214.

Ivanova, M., Porta, F. M., D’Ercole, M., Pescia, C., Sajjadi, E., Cursano, G., De Camilli, E., Pala, O., Mazzarol, G., and Venetis, K. (2023). Standardized pathology report for HER2 testing in compliance with 2023 ASCO/CAP updates and 2023 ESMO consensus statements on HER2-low breast cancer. Virchows Archiv, 1-12.

Jeong, J., Kim, W., Kim, L. K., VanHouten, J., and Wysolmerski, J. J. (2017). HER2 signaling regulates HER2 localization and membrane retention. PLoS One 12, e0174849.

Jost, C., Schilling, J., Tamaskovic, R., Schwill, M., Honegger, A., and Plückthun, A. (2013). Structural basis for eliciting a cytotoxic effect in HER2-overexpressing cancer cells via binding to the extracellular domain of HER2. Structure 21, 1979-1991.

Kallel, I., Kharrat, N., Al-fadhly, S., Rebai, M., Khabir, A., Boudawara, T. S., and Rebai, A. (2010). HER2 polymorphisms and breast cancer in Tunisian women. Genetic testing and molecular biomarkers 14, 29-35.

Luo, R., Chen, H., Liu, Y., Sun, H., Tang, S., and Chen, Y. (2023). Symptom clusters among breast cancer patients in relation to chemotherapy cycles: a longitudinal study. Supportive Care in Cancer 31, 573.

Meshkat, M., Tanha, H. M., Naeini, M. M., Ghaedi, K., Sanati, M. H., Meshkat, M., and Bagheri, F. (2016). Functional SNP in stem of mir-146a affects Her2 status and breast cancer survival. Cancer Biomarkers 17, 213-222.

Pack, S. P., and Yoo, Y. J. (2004). Protein thermostability: structure-based difference of amino acid between thermophilic and mesophilic proteins. Journal of Biotechnology 111, 269-277.

Righetti, P. G. (2004). Determination of the isoelectric point of proteins by capillary isoelectric focusing. Journal of chromatography A 1037, 491-499.

Roheel, A., Khan, A., Anwar, F., Akbar, Z., Akhtar, M. F., Imran Khan, M., Sohail, M. F., and Ahmad, R. (2023). Global epidemiology of breast cancer based on risk factors: a systematic review. Frontiers in Oncology 13, 1240098.

Siegel, R. L., Miller, K. D., Wagle, N. S., and Jemal, A. (2023). Cancer statistics, 2023. Ca Cancer J Clin 73, 17-48.

Su, Y., Jiang, Y., Sun, S., Yin, H., Shan, M., Tao, W., Ge, X., and Pang, D. (2015). Effects of HER2 genetic polymorphisms on its protein expression in breast cancer. Cancer epidemiology 39, 1123-1127.

Swain, S. M., Shastry, M., and Hamilton, E. (2023). Targeting HER2-positive breast cancer: Advances and future directions. Nature Reviews Drug Discovery 22, 101-126.

Wakefield, D. L., Golfetto, O., Jorand, R., Biswas, S., Meyer, K., Avery, K. N., Zer, C., Cacao, E. E., Tobin, S. J., and Talisman, I. J. (2023). Using quantitative single molecule localization microscopy to optimize multivalent HER2-targeting ligands. Frontiers in Medicine 10, 1064242.

Wu, Q., Yang, F., Liu, Y. H., Zhang, H., Zhang, S., Xin, L., and Xu, L. (2023). Analysis of clinicopathological characteristics and prognostic factors of early‐stage human epidermal growth factor receptor 2 (HER2)‐low breast cancer: Compared with HER2‐0 breast cancer. Cancer Medicine 12, 19560-19575.

Zakaria, N. H., Hashad, D., Saied, M. H., Hegazy, N., Elkayal, A., and Tayae, E. (2023). Genetic mutations in HER2-positive breast cancer: possible association with response to trastuzumab therapy. Human Genomics 17, 1-12.

Downloads

Published

2023-12-31

How to Cite

MUCCEE , F., RAZZAQ, F., KHATOON , A., HAIDER, K., & KHAN , A. (2023). IN-SILICO CHARACTERIZATION OF HUMAN HER2 GENE TO PREDICT THE BREAST CANCER ASSOCIATED BIOMARKERS. Biological and Clinical Sciences Research Journal, 2023(1), 629. https://doi.org/10.54112/bcsrj.v2023i1.629