Identification of Antibiotic-Producing Bacteria against Selected MDR pathogens from Pharmaceutical Waste Soil
DOI:
https://doi.org/10.54112/bcsrj.v6i2.1597Keywords:
Antibiotic Producing Bacteria, Antibacterial Activities, GC-MS Analysis, Submerged Fermentation, Well Diffusion Method, Biochemical TestsAbstract
Antibiotics or antimicrobial agents are the most significant utilized secondary metabolites, which are commonly synthesized by soil bacteria and fungi and found to be effective. Most of the antibiotics used are derived from the soil bacteria and Actinomycetes. Antibiotic resistance poses a serious global health threat, making infections harder to treat, potentially leading to longer illnesses, more complications, increased healthcare costs, and even death. The present research project has been designed to identify and characterize the antibiotic-producing bacteria from the waste soil samples collected from ten different Pharmaceutical Industrial waste soils of Hattar, Haripur, using standard microbiological techniques. Objective: To isolate, identify, and characterize antibiotic-producing bacterial strains from pharmaceutical industrial waste soils, and to evaluate their antibacterial activity against selected MDR pathogens. Methods: Overall, 10 bacterial strains were isolated from waste soil of Pharmaceutical industries to examine their antibacterial activity against four tested pathogens, such as Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Staphylococcus aureus, by using the well diffusion method. Only four bacterial strains out of ten showed high antibacterial activity against these selected MDR pathogens. The isolated bacterial strains were initially identified through Gram staining and biochemical tests. For molecular identification, the MALDI TOF technique was used. Results: The isolated strains S1 and S6 were Enterobacter cloacae, S2 was Enterobacter asburiae, and S8 was identified as Pseudomonas aeruginosa. Then the crude extracts of S1, S2, S6, and S8 were further analyzed by GC-MS to identify the compounds present, in which almost 300 compounds were identified, and out of 300 compounds, some of them (D-Glycero-D-Gulo-Heptonic Acid, D-(+)-Ribonic Acid.Gamma.-Lac, Oxalic Acid, Ethyl Neopentyl E, D-Glycero-D-Gulo-Heptonic Acid, Hentriacontane, Neopentyl Glycol, Strychane, 1-Acetyl-20.Alpha, 3,4-Altrosan, Carbamic Acid, Hydroxy-, Ethyl, etc) were found in previous literature showing anti-microbial, anti-bacterial, anti-fungal, anti-inflammatory, anti-tumor, and anti-cancerous activities. Some new compounds were also detected. Further research of the identified compounds may detect some more effective antibacterial agents against selected MDR pathogens (Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Staphylococcus aureus). Conclusion: Bacteria present in waste soil samples of Pharmaceutical industries have the potential to show antibacterial activity against selected MDR pathogens (Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Staphylococcus aureus), and biologically active compounds having antibacterial properties may be extracted from these bacterial isolates.
Downloads
References
Kaur, J. (2014). A comprehensive review on metabolic syndrome. Cardiology research and practice, 2014.
Uwalaka, E. I., Kassim, Z. J., Abdulmumin, A. R., &Hamzat, A. (2019). Isolation and identification of antibiotic producing bacteria from soil samples of abattoir in lapai, niger state, nigeria. Journal of Applied Life Sciences International, 22(2), 1-8.
Serwecińska, L. (2020). Antimicrobials and antibiotic-resistant bacteria: a risk to the environment and to public health. Water, 12(12), 3313.
Rafiq, A., Ikram, M., Ali, S., Niaz, F., Khan, M., Khan, Q., & Maqbool, M. (2021). Photocatalytic degradation of dyes using semiconductor photocatalysts to clean industrial water pollution. Journal of Industrial and Engineering Chemistry, 97, 111-128.
Sitotaw, B., Ayalew, F., Girma, A., Geta, K., & Kibret, M. (2021). High prevalence of antibiotic resistance bacteria isolated from municipal solid waste dumpsite, bahir dar, ethiopia.
Fatunla, O., Essien, J. P., Ita, B. N., Asamudo, N. U., Ekong, J., John, O. U. M., & Abraham, N. A. (2024). Antibiosis and GC-MS of secondary metabolites of rhizosphere bacteria from Manatee foodplants in the humic freshwater ecosystem of Eniong river, Nigeria. Recent Advances in Natural Sciences, 68-68.
Koskeroglu, K., Barel, M., Hizlisoy, H., & Yildirim, Y. (2023). Biofilm formation and antibiotic resistance profiles of water-borne pathogens. Research in Microbiology, 174(5), 104056.
Garrity, G. M., Jones, D., Krieg, N. R., Ludwig, W., Rainey, F. A., Schleifer, K. H., & Whitman, W. B. (2009). The firmicutes (Vol. 3). P. De Vos (Ed.). New York, NY, USA: Springer.
Shrestha, B., Nath, D. K., Maharjan, A., Poudel, A., Pradhan, R. N., & Aryal, S. (2021). Isolation and Characterization of Potential Antibiotic‐Producing Actinomycetes from Water and Soil Sediments of Different Regions of Nepal. International Journal of Microbiology, 2021(1), 5586165.
Alfarhan, A., Rajagopal, R., & Ponnuswamy, V. (2024). Valorization of Unripe Banana Peel (Robusta) Powder for the Production of Tannase Using Bacillus xiamenensis in Submerged Fermentation. BioResources, 19(3).
Raja, R., Hemaiswarya, S., Arunkumar, K., Mathiyazhagan, N., Kandasamy, S., Arun, A., & Ramasamy, P. (2023). Efficacy of Eisenia bicyclis phlorotannins in the treatment of diabetes and reducing inflammation. Food Bioscience, 52, 102381.
Tyagi, T., & Agarwal, M. (2017). Phytochemical screening and GC-MS analysis of bioactive constituents in the ethanolic extract of Pistia stratiotes L. and Eichhornia crassipes (Mart.) solms. Journal of Pharmacognosy and phytochemistry, 6(1), 195-206.
Abourehab, M. A., Pramanik, S., Abdelgawad, M. A., Abualsoud, B. M., Kadi, A., Ansari, M. J., & Deepak, A. (2022). Recent advances of chitosan formulations in biomedical applications. International journal of molecular sciences, 23(18), 10975.
Rathore, D. S., Sheikh, M., Gohel, S., & Singh, S. P. (2019). Isolation strategies, abundance and characteristics of the marine actinomycetes of Kachhighadi, Gujarat, India. Journal of the Marine Biological Association of India, 61(1), 71-78.
Singh, S., Singh, S., Trivedi, M., & Dwivedi, M. (2024). An insight into MDR Acinetobacter baumannii infection and its pathogenesis: Potential therapeutic targets and challenges. Microbial Pathogenesis, 106674.
Charousová, I., Javoreková, S., & Wink, J. (2015). Isolation and characterization of Streptomyces rishiriensis (VY31) with antibiotic activity against various pathogenic microorganisms. The Journal of Microbiology, Biotechnology and Food Sciences, 4, 23.
Das, N., Kotoky, R., Maurya, A. P., Bhuyan, B., & Pandey, P. (2021). Paradigm shift in antibiotic-resistome of petroleum hydrocarbon contaminated soil. Science of The Total Environment, 757, 143777.
Xu, Y., Soko, W. C., Li, Y., & Bi, H. (2024). Capture and identification of bacteria from blood clam (Scapharca subcrenata) based on multi-targeted immunomagnetic beads and MALDI-TOF MS. Food Bioscience, 61, 104747.
Lay Jr, J. O. (2001). MALDI‐TOF mass spectrometry of bacteria. Mass spectrometry reviews, 20(4), 172-194.
Croxatto, A., Prod'hom, G., & Greub, G. (2012). Applications of MALDI-TOF mass spectrometry in clinical diagnostic microbiology. FEMS microbiology reviews, 36(2), 380-407.
Khajuria, V., Gupta, S., Sharma, N., Kumar, A., Lone, N. A., Khullar, M., ... & Ahmed, Z. (2017). Anti-inflammatory potential of hentriacontane in LPS stimulated RAW 264.7 cells and mice model. Biomedicine & Pharmacotherapy, 92, 175-186.
Matthew, O., James, A., Akogwu, I., Fabunmi, T., Idoko, O., Ebun, B., ... & Dorathy, O. (2021). Evaluation of in vitro antioxidant, phytochemical and GC-MS analysis of aqueous extract of Solanum Dasyphyllum fruits. J. Med Biol. Sci Res, 7(3), 10-14.
Rashid, H. M., Mahmod, A. I., Afifi, F. U., & Talib, W. H. (2022). Antioxidant and Antiproliferation Activities of Lemon Verbena (Aloysia citrodora): An in vitro and in vivo study. Plants, 11(6), 785.
https://www.sigmaaldrich.com/PK/en/product/aldrich/857297
Peterson, M. E. (2013). Xylitol. Topics in companion animal medicine, 28(1), 18-20.
Hlaïbi, M., Benaïssa, M., Busatto, C., Verchère, J. F., & Chapelle, S. (1995). A 13C and 183W NMR study of d-glycero-d-gulo-heptonic acid as a multisite ligand in tungstate complexes. Carbohydrate research, 278(2), 227-238.
Rynjah, D., Browne, R. B., Gogoi, M., & Roy, J. D. (2024). Ethyl acetate fraction of Rhododendron arboreum as potential therapeutic against drug-resistant bacterial isolates through experimental and in silico approach. Proceedings of the Indian National Science Academy, 1-13.
Green, T., Toghill, A., Lee, R., Moore, R., & Foster, J. (2002). The development of forestomach tumours in the mouse following exposure to 2-butoxyethanol by inhalation: studies on the mode of action and relevance to humans. Toxicology, 180(3), 257-273.
Man, C. A. I. C., Razak, W. R. W. A., & Yahya, M. F. Z. R. (2022). Antibacterial and antibiofilm activities of Swietenia macrophylla King ethanolic extract against foodborne pathogens. Malaysian Applied Biology, 51(4), 45-56.
Lu, L., Hu, Z., Fang, C., & Hu, X. (2023). Characteristic flavor compounds and functional components of fragrant rice with different flavor types. Foods, 12(11), 2185.
Kumar, D., Prashar, C., Vandana, V., Pandey, K. C., Vaya, D., & Chundawat, T. S. (2024). Synthesis of tetrahydro-β-carboline analogs with N11 modifications and study of their antimalarial activities. Medicinal Chemistry Research, 1-11.
PK, R., Ratheesh Chandra, P., & Khaleel, K. M. (2016). PHYTOCHEMICAL EVALUATION AND GC-MS ANALYSIS OF WHOLE PLANT EXTRACT OF SEIDENFIA RHEEDII (SW.) SZLACH. (ORCHIDACEAE).
Thompson, J. L., & Hinton, M. (1997). Antibacterial activity of formic and propionic acids in the diet of hens on Salmonellas in the crop. British poultry science, 38(1), 59-65.
Antone, U., Ciprovica, I., Zolovs, M., Scerbaka, R., & Liepins, J. (2022). Propionic acid fermentation—study of substrates, strains, and antimicrobial properties. Fermentation, 9(1), 26.
Steffan, S., Tantucci, P., Bardi, L., & Marzona, M. (2002). Effects of cyclodextrins on dodecane biodegradation. Journal of inclusion phenomena and macrocyclic chemistry, 44, 407-411.
Sáez-Navarrete, C., Gelmi, C. A., Reyes-Bozo, L., & Godoy-Faúndez, A. (2008). An exploratory study of peat and sawdust as enhancers in the (bio) degradation of n-dodecane. Biodegradation, 19, 527-534.
Surya, M., Thiruvudainambi, S., Ebenezar, E. G., Vanniarajan, C., Kumutha, K., & Vellaikumar, S. (2020). GC-MS Analysis of antimicrobial compounds produced by Bacillus spp. against rice sheath rot pathogen Sarocladium oryzae. J. Entomol. Zool. Stud, 8, 1417-1423.
Serrano-Arnaldos, M., García-Martínez, J. J., Ortega-Requena, S., Bastida, J., Máximo, F., & Montiel, M. C. (2020). Reaction strategies for the enzymatic synthesis of neopentyl glycol diheptanoate. Enzyme and Microbial Technology, 132, 109400.
Reist, E. J., Spencer, R. R., & Baker, B. R. (1960). Potential Anticancer Agents. 1 XXVII. Synthesis of Alkylating Agents Derived from 6-Amino-6-deoxy-D-glucose. Journal of the American Chemical Society, 82(8), 2025-2029.
Indraningrat, A. A. G., Purnami, P. P. C. P., Aryastuti, A. A. S. A., & Wijaya, M. D. (2023). Antibacterial Activity of Pseudomonas Aeruginosa ISP1RL3 Against Multidrug Resistance Bacteria. Jurnal Penelitian Pendidikan IPA, 9(12), 11126-11136.
Reist, E. J., Spencer, R. R., & Baker, B. R. (1960). Potential Anticancer Agents. 1 XXVII. Synthesis of Alkylating Agents Derived from 6-Amino-6-deoxy-D-glucose. Journal of the American Chemical Society, 82(8), 2025-2029.
Villecco, M. B., Catalán, J. V., Vega, M. I., Garibotto, F. M., Enriz, R. D., & Catalán, C. A. (2008). Synthesis and antibacterial activity of highly oxygenated 1, 8-Cineole derivatives. Natural Product Communications, 3(3), 1934578X0800300301.
Flynn, T. M., & Southwell, I. A. (1979). 1, 3-Dimethyl-2-oxabicyclo (2, 2, 2)-octane-3-methanol and 1, 3-Dimethyl-2-oxa-bicyclo (2, 2, 2) octane-3-carboxylic Acid, Urinary Metabolites of 1, 8-Cineole. Australian Journal of Chemistry, 32(9), 2093-2095.
Alkhalidi, M. H. O., Al Hasseny, R. J., & Abes, S. M. (2024). GC-MS profiling of Volatile Metabolites produced by Enterococcus faecalis and Evaluation of Its Antibacterial and Antifungal Activity. Journal of Current Medical Research and Opinion, 7(04), 2294-2303.
Lu, L., Hu, Z., Fang, C., & Hu, X. (2023). Characteristic flavor compounds and functional components of fragrant rice with different flavor types. Foods, 12(11), 2185.
Sahu, M. K., Kaushik, K., Das, A., & Jha, H. (2020). In vitro and in silico antioxidant and antiproliferative activity of rhizospheric fungus Talaromyces purpureogenus isolate-ABRF2. Bioresources and Bioprocessing, 7, 1-16.
Ganie, S. Y., Javaid, D., Singh, A., Jawaid, F., Anjum, S., Kumari, M., ... & Reshi, M. S. (2024). Chemoprofiling and in vitro evaluation of anticancer, antioxidant and antibacterial activities of Asparagus racemosus (Willd). Pharmacological Research-Natural Products, 2, 100015.
Akpata, E. S., & Akinrimisi, E. O. (1977). Antibacterial activity of extracts from some African chewing sticks. Oral surgery, oral medicine, oral pathology, 44(5), 717-722.
Chen, X., Yin, J., Li, P., He, M., Jin, L., Wu, J., ... & Hu, D. (2014). Synthesis and antibacterial activity of bisthioether derivatives containing a 1, 3, 4-thiadiazoles moiety. Phosphorus, Sulfur, and Silicon and the Related Elements, 189(1), 134-142.
HO, N. (2013). 3 R= OH, R’= NH2, X= OH: kanamycin A HO—> 4 R= NH2, R’= NH2, X= OH: kanamycin B MeNH 5 R= NH2, R’= OH, X= OH: kanamycin C 6 R= OH, R’= NH2, X= H: 3'-deoxykanamycin A HO 7: streptomycin. Studies in Natural Products Chemistry: Stereoselective Synthesis, 143.
Campbell, J. A., & Hart, D. J. (1993). tert-Butyl ((2-(trimethylsilyl) ethyl) sulfonyl) carbamate: a new reagent for use in Mitsunobu reactions. The Journal of Organic Chemistry, 58(10), 2900-2903.
Balandis, B., Anusevičius, K., Šiugždaitė, J., Kantminienė, K., & Mickevičius, V. (2019). Synthesis and antibacterial activity of 3-substituted 1-(2-methyl-5-nitrophenyl)-5-oxopyrrolidine derivatives. Research on Chemical Intermediates, 45, 5499-5517.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Malik Abdul Wahab, Syeda Asma Bano, Abdul Tawab, . Akrama, Sadia Alam, Sana Munir

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.