INVITRO PROPAGATIONS AND MICRO RHIZOME INDUCTION OF ZINGIBERACEAE OFFICINALE
DOI:
https://doi.org/10.54112/bcsrj.v2024i1.1358Keywords:
Ginger, Micropropagation, Tissue culture, Acclimatization, Shoot formation, Micro rhizomeAbstract
Ginger (Zingiber officinale Rosc.), is a rhizomatous crop that belongs to the Zingiberaceae family. Its bioactive ingredient has gained much attention for its many uses in medicine, food, and industry. Traditional rhizome propagation fails because of disease susceptibility, limited multiplication rates, and seasonal limitations. In vitro micropropagation and micro-rhizome induction may provide disease-free, genetically uniform plants throughout the year. Ginger micropropagation encounters contamination, soma clonal variance, hyperhydricity, Subculturing, and rigorous sterilizations. To mitigate these issues this review evaluates ginger micropropagation and in vitro micro-rhizome formation techniques. Ginger tissue culture requires explant selection and sterilization. Shoot tips, lateral buds, and rhizome segments exhibit variable responses to media compositions and sterilization methods. The fundamental medium is the Murashige and Skoog (MS) medium, which comprises organic compounds and carbon sources. The cytokine 6-benzylaminopurine influences shoot induction and proliferation. Reduced levels of NAA or IAA enhance shoot elongation and quality. To stop hyperhydricity and callus formation, which slow down shoot growth and regeneration, the right amounts of cytokinin and auxin must be present. The multiplication and storage of ginger depend on the production of micro-rhizomes, which requires certain concentrations of growth regulators and suitable environmental conditions. Rhizome development needs 6–8% sugar as an osmotic agent and energy source. Cytokinins and auxins, such as NAA and IBA, enhance micro-rhizome biomass. Photoperiod and temperature influence micro-rhizome development, with 16 hours of light and temperatures of 25 ± 2°C promoting growth. Plantlets must acclimate to soilless or substrate medium after in vitro cultivation. The micropropagation of ginger and the induction of micro-rhizomes may enhance industrial output. This review aims to address the knowledge gap on the micropropagation of ginger by synthesizing and critically evaluating previous studies. It functions as a comprehensive resource for researchers and those aiming to improve ginger farming using sophisticated biotechnology methods.
Downloads
References
Abbas, A., Rashad, A., Rehman, A., & Bukhari, M. (2024a). Exploring the response mechanisms of rice to salinity stress. Bulletin of Biological and Allied Sciences Research, 2024(1), 58. https://doi.org/10.54112/bbasr.v2024i1.58
Abbas, A., Arshad, A., Rehman, A., Bukhari, M., & Zaman, S. (2024b). Revolutionizing plant breeding programs with advancements in molecular marker-assisted selection. Bulletin of Biological and Allied Sciences Research, 2024(1), 57. https://doi.org/10.54112/bbasr.v2024i1.57
Abbas, M., Aly, U., Taha, H., & Gaber, E.-S. (2021). In vitro production of microrhizomes in ginger (Zingiber officinale Rosco). Journal of Microbiology, Biotechnology and Food Sciences, 142-148.
Abbas, A., & Rehman, A. (2021). Exploring the latest developments in tomato tissue culture. Bulletin of Biological and Allied Sciences Research, 2021(1), 35. https://doi.org/10.54112/bbasr.v2021i1.35
Abbas, A., Rehman, A., & Javed, M. (2021). Exploring the potential of in vitro tissue culture in breeding programs of legume and pulse crops: utilization and present condition. Bulletin of Biological and Allied Sciences Research, 2021(1), 36. https://doi.org/10.54112/bbasr.v2021i1.36
Abdalla, N., El-Ramady, H., Seliem, M. K., El-Mahrouk, M. E., Taha, N., Bayoumi, Y., & Dobránszki, J. (2022). An academic and technical overview on plant micropropagation challenges. Horticulturae, 8(8), 677.
Ali, A. M. A., El-Nour, M. E. M., & Yagi, S. M. (2016). Callus induction, direct and indirect organogenesis of ginger (Zingiber officinale Rosc). African Journal of Biotechnology, 15(38), 2106-2114.
Alqadasi, A. S., Al-Madhagi, I., Al-Kershy, A., & Al-Samaei, M. (2022). Effect of Cytokinin Type and pH Level on Regeneration of Ginger in vitro. International Journal of Horticultural Science & Technology, 9(3).
Amgai, R. B., Prasai, H. K., & Pandey, Y. R. (2017). Effect of sucrose and growth regulator’s level on ginger micropropagation. Journal of Nepal Agricultural Research Council, 3, 45-48.
Anh, N. H., Kim, S. J., Long, N. P., Min, J. E., Yoon, Y. C., Lee, E. G., Kim, M., Kim, T. J., Yang, Y. Y., & Son, E. Y. (2020). Ginger on human health: a comprehensive systematic review of 109 randomized controlled trials. Nutrients, 12(1), 157.
Arshad, A., Iqbal, M., Farooq, S., & Abbas, A. (2024). Genetic evaluation for seed yield and its component traits in sunflower (helianthus annuus l.) using line × tester approach. Bulletin of Biological and Allied Sciences Research, 2024(1), 63. https://doi.org/10.54112/bbasr.v2024i1.63
Ayenew, B., Tefera, W., & Kassahun, B. (2012). In vitro propagation of Ethiopian ginger (Zingiber officinale Rosc.) cultivars: Evaluation of explant types and hormone combinations. African Journal of Biotechnology, 11(16), 3911-3918.
Ayenew, B., Tefera, W., & Kassahun, B. (2012). In vitro propagation of Ethiopian ginger (Zingiber officinale Rosc.) cultivars: Evaluation of explant types and hormone combinations. African Journal of Biotechnology, 11(16), 3911-3918.
Babu, G. A., Mosa Christas, K., Kowsalya, E., Ramesh, M., Sohn, S. I., & Pandian, S. (2022). Improved sterilization techniques for successful in vitro micropropagation. In Commercial Scale Tissue Culture for Horticulture and Plantation Crops (pp. 1-21). Singapore: Springer Nature Singapore.
Bhagyalakshmi, B., & Singh, N. S. (1988). Meristem culture and micropropagation of a variety of ginger (Zingiber officinale Rosc.) with a high yield of oleoresin. Journal of Horticultural Science, 63(2), 321-327.
Cao, B., Xia, J., Lv, Y., Chen, Z., & Xu, K. (2020). Effect of a mist culture system on photosynthesis and nitrogen metabolism in ginger. Protoplasma, 257(5), 1359-1371.
Chattha, M., Maqsood, M., Javid, I., Ali, S., Abbas, M., & Anas, M. (2024). The impact of seed size on initial drought stress resilience and yield in wheat cultivation. Bulletin of Biological and Allied Sciences Research, 2024(1), 79. https://doi.org/10.54112/bbasr.v2024i1.79
Chavan, J. J., Kshirsagar, P. R., Pai, S. R., & Pawar, N. V. (2018). Micropropagation, metabolite profiling, antioxidant activities and chromatographic determination of bioactive molecules across in vitro conditions and subsequent field cultivation stages of ‘Shampoo Ginger’(Zingiber zerumbet L. Roscoe ex Sm). Biocatalysis and agricultural biotechnology, 16, 79-89.
CZ, C. R., Pavallekoodi, G., & Sreeramanan, S. (2016). Micropropagation of ginger (Zingiber officinale var. rubrum) using buds from microshoots. Pakistan Journal of Botany, 48(3), 1153-1158.
de Oliveira Santos, E., de Jesus Rodrigues, A. A., da Silva, E. R., & de Carvalho, A. C. P. P. (2016). BAP concentration and subcultive number in torch ginger multiplication.
Devi, D. S., Bui, S., Kumaria, S., & Das, M. C. (2017). In vitro rhizome induction of Hedychium coronarium Koenig. a rhizomatous medicinal and aromatic plant. Bio Dis, 8(3), 432-437.
Estouka, I., Alhagdow, M., & Bughrara, S. (2021). Simple micropropagtion method of ginger (Zingiber officinale Rosc.). J. Genet. Genom. Plant Breed, 5(4), 106-114.
George, N. M., Raghav, S., & Prasath, D. (2022). Direct in vitro regeneration of medicinally important Indian and exotic red-colored ginger (Zingiber officinale Rosc.) and genetic fidelity assessment using ISSR and SSR markers. In Vitro Cellular & Developmental Biology-Plant, 1-8.
Gezahegn, G., Feyissa, T., & Rezene, Y. (2023). Replacement of ammonium nitrate by alternative nitrogen sources in MS medium to enhance ginger (Zingiber officinale Rosc.) in vitro regeneration. Plant Cell, Tissue and Organ Culture (PCTOC), 154(1), 89-95.
Gnasekaran, P., Rahman, Z. A., Chew, B. L., Appalasamy, S., Mariappan, V., & Subramaniam, S. (2021). Development of micropropagation system of Zingiber officinale var. rubrum Theilade using different spectrum light-emitting diode (LED) irradiation. Industrial Crops and Products, 170, 113748.
Hamirah, M., Sani, H., Boyce, P., & Sim, S. (2007). Micropropagation of red ginger (Zingiber montanum Koenig), a medicinal plant. Proceedings Asia Pacific Conference on Plant Tissue and Agribiotechnology (APaCPA),
Haroon, M., Waseem, M., Anwar, S., Sarfraz, Q., Sami, A., Khaliq, G., & Abass, H. (2024). Exploring the tillering potential in wheat cultivars at different planting geometry. Bulletin of Biological and Allied Sciences Research, 2024(1), 82. https://doi.org/10.54112/bbasr.v2024i1.82
Hazarika, B. (2003). Acclimatization of tissue-cultured plants. Current science, 1704-1712.
Hazarika, B. (2006). Morpho-physiological disorders in in vitro culture of plants. Scientia horticulturae, 108(2), 105-120.
Hore, P., & Tanti, B. (2018). Regeneration of plantlets from rhizome bud explants of Lasia spinosa (Lour.) Thwaites-A medicinal plants of Assam. International Journal of Life Science and Scientific Research, 4, 1736-1743.
Irfan, M., Fatima, N., Ali, F., & Haider, M. (2024). Assessing potato cultivation techniques in Pakistan: an analysis of existing methods and identified gaps. Bulletin of Biological and Allied Sciences Research, 2024(1), 80. https://doi.org/10.54112/bbasr.v2024i1.80
Junaid, M., & Gokce, A. (2024). Global agricultural losses and their causes. Bulletin of Biological and Allied Sciences Research, 2024(1), 66. https://doi.org/10.54112/bbasr.v2024i1.66
Jaffar Shaik, R. K. G. (2018). In vitro propagation of Zingiber officinale through rhizome and effect of plant growth regulators. Journal of Pharmacognosy and Phytochemistry, 7(5), 2012-2014.
Jagadev, P. N., Panda, K. N., & Beura, S. (2006, August). A fast protocol for in vitro propagation of ginger (Zingiber officinale Rosc.) of a tribal district of India. In XXVII International Horticultural Congress-IHC2006: International Symposium on Plants as Food and Medicine: The Utilization 765 (pp. 101-108).
Kango, F. D., Cacaï, G. H. T., Sè, S., Hounguè, J. A., Kouke, J. R. U., Dè, D., & Ahanhanzo, C. (2024). Implementation of the Acclimatization Process for Ginger Plantlets (Zingiber officinale Roscoe). Open Journal of Applied Sciences, 14(8), 2236-2248.
Kasilingam, T., Raman, G., Sundramoorthy, N. D., Supramaniam, G., Mohtar, S. H., & Avin, F. A. (2018). A review on in vitro regeneration of ginger: Tips and highlights. Eur. J. Med. Plants, 23, 1-8.
Lincy, A., & Sasikumar, B. (2010). Enhanced adventitious shoot regeneration from aerial stem explants of ginger using TDZ and its histological studies. Turkish Journal of Botany, 34(1), 21-29.
Manisha, T., Vishal, S., & Garima, K. (2018). In vitro production of disease free planting material of ginger (Zingiber officinale Rosc.)-A single step procedure. Research Journal of Biotechnology Vol, 13, 3.
Meetei, T. N., & Singh, K. N. (2015). Micro-rhizome induction in Sying makhir, an important ginger cultivar of Meghalaya
Minas, G. (2009). Ginger (Zingiber officinale Rosc) Sanitation and Micropropagation In Vitro. International Symposium on Medicinal and Aromatic Plants-SIPAM2009 853,
Miri, S. M. (2020). Micropropagation, callus induction and regeneration of ginger (Zingiber officinale Rosc.). Open agriculture, 5(1), 75-84.
Mohamad, M. E., Awad, A., Majrashi, A., Abd Esadek, O., El-Saadony, M. T., Saad, A. M., & Gendy, A. S. (2022). In vitro study on the effect of cytokines and auxins addition to growth medium on the micropropagation and rooting of Paulownia species (Paulownia hybrid and Paulownia tomentosa). Saudi Journal of Biological Sciences, 29(3), 1598-1603.
Mohanty, S., Panda, M. K., Subudhi, E., Acharya, L., & Nayak, S. (2008). Genetic stability of micropropagated ginger derived from axillary bud through cytophotometric and RAPD analysis. Zeitschrift für Naturforschung C, 63(9-10), 747-754.
Mol, J., Salim, V., Chemparathy, S. M., Karim, R., & Umesh, B. T. (2016). An efficient protocol for raising contamination free micropropagation of Zingiber officinale (Ginger). Journal of Pharmaceutical and Biological Sciences, 4(5), 145.
Nkere, C., & Mbanaso, E. (2010). Optimizing concentrations of growth regulators for in-vitro ginger propagation. Journal of Agrobiology, 27(2), 61.
Patricia, D., Stephen, B., & John, A. (2021). Shoot organogenesis from leaf discs of the African ginger (Mondia whitei (Hook. f.) Skeels), an endangered medicinal plant. In Vitro Cellular & Developmental Biology-Plant, 57(3), 493-498.
Paul, R., & Shylaja, M. R. (2023). Growth analysis of ginger (Zingiber officinale Rosc.) regenerated through various routes of micropropagation during ex vitro establishment.
Perera, L. C., & Aruggoda, A. G. B. Evaluating Best Surface Sterilization Method and Hormone Combination For Shoots Initiation Of Zingiber officinale.
Pospóšilová, J., Tichá, I., Kadleček, P., Haisel, D., & Plzáková, Š. (1999). Acclimatization of micropropagated plants to ex vitro conditions. Biologia plantarum, 42(4), 481-497.
Prasath, D., Kandiannan, K., Srinivasan, V., Leela, N., & Anandaraj, M. (2018). Comparison of conventional and transplant production systems on yield and quality of ginger (Zingiber officinale).
Rajani, H., & Patil, S. S. (2008, August). In Vitro Response of Different Explants'types on Shoot And Root Development Of Ginger. In VI International Symposium on In Vitro Culture and Horticultural Breeding 829 (pp. 349-353).
Rehman, A., Abbas, A., Arshad, A., Raza, G., Umar, M., & Bukhari, M. (2024). advancements in genomic technologies and their impact on crop improvement and breeding methods. Bulletin of Biological and Allied Sciences Research, 2024(1), 61. https://doi.org/10.54112/bbasr.v2024i1.61
Resham Babu Amgai., Hari Kumar Prasai, and Yama Raj Pandey (2017). Effect of Sucrose and Growth Regulator’s Level on Ginger Micropropagation: Journal of Nepal Agricultural Research Council
Roik, M., Bekh, N., & Kotsar, M. (2019). In vitro clonal microreproduction of ginger.
Salathia, A., Sharma, M., Gupta, R., Sharma, M., & Sharma, S. (2022). Effect of Varying Concentrations of Growth Regulators on Micro Propagation of Ginger
Salim, N. I. S., Samah, S. N. A. A., Abdullah, S., & Yusuf, N. A. (2024). Sterilisation Protocols and in vitro Shoot and Root Induction of Zingiber officinale var. Rosc. using 6-Benzylaminopurine (BAP) and Naphthalene Acetic Acid (NAA). Journal Of Agrobiotechnology, 15(1), 1-10.
Sami, A., Haider, M., Meeran, M., Ali, M., Abbas, A., Ali, Q., & Umar, M. (2023). exploring morphological traits variation in chenopodium murale: a comprehensive multivariate analysis. Bulletin of Biological and Allied Sciences Research, 2023(1), 43. https://doi.org/10.54112/bbasr.v2023i1.43
Sathyagowri, S., & Seran, T. H. (2011). In vitro plant regeneration of ginger (Zingiber officinale Rosc.) with emphasis on initial culture establishment. International Journal of Medicinal and Aromatic Plants, 1(3), 195-202.
Shaaban, A., Elnfishy, N., Aween, Z., Abdelah, E., & Abughni, E. (2023). In vitro Micropropagation of Ginger plant (Zingiber officinale). Scientific Journal for Faculty of Science-Sirte University, 3(2), 154-161.
Shaik, J. (2018). In vitro propagation of Zingiber officinale through rhizome and effect of plant growth regulators. Journal of Pharmacognosy and Phytochemistry, 7(5), 2012-2014.
Shakya, A. K. (2016). Medicinal plants: Future source of new drugs. International Journal of Herbal Medicine, 4(4), 59-64.
Sharma, T., & Singh, B. (1997). High-frequency in vitro multiplication of disease-free Zingiber officinale Rosc. Plant Cell Reports, 17(1), 68-72.
Sukarnih, T., Rudiyana, Y., Hanifah, N., & Sa’adah, N. (2021). Micropropagation of red ginger (Zingiber officinale Rosc. Var. rubrum) using several types of cytokinins. Journal of Physics: Conference Series,
Sultana, A. Z. R. A., Hassan, L., Ahmad, S. D., Shah, A. H., Batool, F., Islam, M. A., ... & Moonmoon, S. (2009). In vitro regeneration of ginger using leaf, shoot tip and root explants. Pak. J. Bot, 41(4), 1667-1676.
Sumon, M. N. R., Banu, T. A., Mollika, S. R., Goswami, B., Islam, M., Akter, S., ... & Khan, M. S. (2019). In vitro Regeneration of Ginger (Zingiber officinale Roscoe). Plant Tissue Culture and Biotechnology, 29(2), 151-159.
Swarnathilaka, D., Kottearachchi, S., & Weerakkody, J. (2016). In-vitro multiplication of ginger (Zingiber officinale Rosc.) cultivars local, Chinese and Rangun. Proceedings of 1st International Conference on Bioscience and Biotechnology,
Syahid, S. F., Lindiana, L., Bermawie, N., & Meilawati, N. L. W. (2023, December). Micropropagation of red ginger (Zingiber officinale Rosc. var Rubrum.) Jahira 2 variety through in vitro culture. In AIP Conference Proceedings (Vol. 2972, No. 1). AIP Publishing.
Tewelde, S., Patharajan, S., Teka, Z., & Sbhatu, D. B. (2020). Assessing the efficacy of broad-spectrum antibiotics in controlling bacterial contamination in the In vitro Micropropagation of Ginger (Zingiber officinale Rosc). The Scientific World Journal, 2020.
Thingbaijam, D. S., & Huidrom, D. S. (2014). High frequency plant regeneration system from transverse thin cell layer section of in vitro derived ‘Nadia’ginger microrhizome. Notulae Scientia Biologicae, 6(1), 85-91.
Villamor, C. C. (2010). Influence of media strength and sources of nitrogen on micropropagation of ginger, Zingiber officinale Rosc. E-International Scientific Research Journal, 2(2), 150-155.
Vivek, K. D. (2024). In-Vitro Microrhizome Induction and Evaluation in Ginger (Zingiber officinale Rosc.) (Doctoral dissertation, UHF Nauni).
Yu, S., Hu, L., Liu, Y., & Cai, X. (2024). In Vitro Microrhizome Production, Genetic Homogeneity Assessment, and Field Performance Evaluation in Ginger. Agronomy, 14(4), 747.
Zahid, N. A., Jaafar, H. Z., & Hakiman, M. (2021). Micropropagation of ginger (Zingiber officinale Roscoe) ‘Bentong’and evaluation of its secondary metabolites and antioxidant activities compared with the conventionally propagated plant. Plants, 10(4), 630.
Zuraida, A. R., Shukri, M., Sabrina, M. N. E., Nazreena, O. A., Zain, C. R. C. M., Pavallekoodi, G., & Sreeramanan, S. (2016). Micropropagation of ginger (Zingiber officinalevar. rubrum) using buds from microshoots. Pakistan Journal of Botany, 48, 1153-1158.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 H ALI, I HUSSAIN, K ALI, S ALI, GM ALI
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.