MANAGEMENT OF MAJOR PRE AND POSTHARVEST FUNGAL DISEASE (ANTHRACNOSE) OF MANGO FRUITS – A REVIEW

Authors

  • G MUSTAFA Mango Research Institute, Multan, Pakistan
  • M IMRAN Mango Research Institute, Multan, Pakistan
  • S NADEEM Nuclear Institute for Agriculture and Biology Collage, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
  • M AHMAD Mango Research Institute, Multan, Pakistan
  • A IQBAL Mango Research Institute, Multan, Pakistan
  • I ALI Entomological Research Institute, AARI, Faisalabad, Pakistan
  • M HASNAIN Entomological Research Institute, AARI, Faisalabad, Pakistan
  • NA MANN Regional Agricultural Research Institute, Bahawalpur, Pakistan
  • R HUSSAIN Mango Research Station, Shujabad, Pakistan
  • M AKRAM Cotton Research Institute (Entomological Division), Multan, Pakistan
  • MZ HAMZA Plant Virology, MNS University of Agriculture, Multan, Pakistan

DOI:

https://doi.org/10.54112/bcsrj.v2024i1.1317

Keywords:

Mango, anthracnose, Colletotrichum, pre and post-harvest, quality, management

Abstract

Mango Mangifera indica L having family Anacardiaceaeis an important fruit in Physical and Biological Sciences. It is a prominent tropical and subtropical fruit produced all over the world. It is a popular fruit in the national as well as an international market due to its exquisite flavor and high nutritional caloric value. However, mangoes are susceptible to a variety of illnesses at all phases of growth, from the plants in the nursery to the fruits in storage or transit. The mango tree, and especially the fruit, is home to a wide range of infections, including fungus, which may be important causes of fruit rot. Colletotrichum species cause anthracnose, a serious disease affecting various crop species, causing fruit blemishes and financial losses. Historically, physical treatments and synthetic fungicides were used, but research into sustainable protection strategies is needed to reduce hazardous chemicals. Pre-harvest and postharvest infections can impair fruit quality and result in significant losses. The visible exterior symptoms frequently appear after ripening, which is commonly associated with the edibility of the fruit and causes significant losses during storage. The economic consequences of such postharvest losses exceed the field losses. So far, chemical-based treatments have dominated mango disease control. However, because of growing worry over residual toxicity caused by the widespread use of synthetic fungicides and the emergence of resistance in pathogen populations, attention has shifted to nonchemical techniques. Biological agents and vegetal derivatives have shown effectiveness, but crucial problems must be resolved before they can be integrated into practical crop protection plans. Biotechnology-based strategies, including RNA interference and genome editing technologies, have shown potential for secure anthracnose control. However, despite their high specificity and potential side effects, several issues need to be addressed before they can be integrated into IPM procedures to prevent Colletotrichum spp. disease.

Downloads

Download data is not yet available.

References

Abd Murad, N. B., & Zainudin, N. A. I. M. (2017). Review of fruit rot diseases of important tropical and some temperate fruit crops. Pertanika Journal of Scholarly Research Reviews 3.

Aguado, A., Pastrana, A., De Los Santos, B., Romero, F., Sánchez, M., & Capote, N. (2012). Efficiency of natural products in the control of Colletotrichum acutatum monitored by real-time PCR. VII International Strawberry Symposium 1049,

Akem, C. N. (2006). Mango anthracnose disease: present status and future research priorities.

Alemu, K., Ayalew, A., & Woldetsadik, K. (2014). Effect of Aqueous Extracts of Some Medicinal Plants in Controlling Anthracnose Disease and Improving Postharvest Quality of Mango Fruit. Persian Gulf Crop Protection 3.

Ali, A., Hei, G. K., & Keat, Y. W. (2016). Efficacy of ginger oil and extract combined with gum arabic on anthracnose and quality of papaya fruit during cold storage. Journal of Food Science and Technology 53, 1435-1444.

Ali, A., Wee Pheng, T., & Mustafa, M. (2015). Application of lemongrass oil in vapour phase for the effective control of anthracnose of ‘Sekaki’papaya. Journal of Applied Microbiology 118, 1456-1464.

Ando, K. (2009). Evaluation of the role of plant architecture and cucumber fruit development in Phytophthora capsici disease development. Michigan State University.

Arauz, L. F. (2000). Mango anthracnose: Economic impact and current options for integrated managaement. Plant disease 84, 600-611.

Arroyave-Toro, J. J., Mosquera, S., & Villegas-Escobar, V. (2017). Biocontrol activity of Bacillus subtilis EA-CB0015 cells and lipopeptides against postharvest fungal pathogens. Biological control 114, 195-200.

Atanda, S., Pessu, P., Agoda, S., Isong, I., & Ikotun, I. (2011). The concepts and problems of post–harvest food losses in perishable crops. African Journal of Food Science 5, 603-613.

Banya, M., Garg, S., & Meena, N. L. (2020). A review: Chilli anthracnose, its spread and management. Journal of Pharmacognosy and Phytochemistry 9, 1432-1438.

Bassanezi, R., Amorim, L., FILHO, A. B., & Berger, R. (2002). Gas exchange and emission of chlorophyll fluorescence during the monocycle of rust, angular leaf spot and anthracnose on bean leaves as a function of their trophic characteristics. Journal of Phytopathology 150, 37-47.

Berrie, A. (2019). Disease monitoring and decision making in integrated fruit disease management. In Integrated management of diseases and insect pests of tree fruit (pp. 201-232). Burleigh Dodds Science Publishing.

Bhattacharjee, P., Warang, O., Das, S., & Das, S. (2022). Impact of Climate Change on Fruit Crops-A Review. Current World Environment 17, 319.

Bordoh, P. K., Ali, A., Dickinson, M., & Siddiqui, Y. (2020). Antimicrobial effect of rhizome and medicinal herb extract in controlling postharvest anthracnose of dragon fruit and their possible phytotoxicity. Scientia Horticulturae 265, 109249.

Bordoh, P. K., Ali, A., Dickinson, M., Siddiqui, Y., & Romanazzi, G. (2020). A review on the management of postharvest anthracnose in dragon fruits caused by Colletotrichum spp. Crop protection 130, 105067.

Borrelli, V. M., Brambilla, V., Rogowsky, P., Marocco, A., & Lanubile, A. (2018). The enhancement of plant disease resistance using CRISPR/Cas9 technology. Frontiers in Plant Science 9, 1245.

Botelho, L. N. S., Rocha, D. A., Braga, M. A., Silva, A., & de Abreu, C. M. P. (2016). Quality of guava cv.‘Pedro Sato’treated with cassava starch and cinnamon essential oil. Scientia Horticulturae 209, 214-220.

Boukaew, S., Petlamul, W., Bunkrongcheap, R., Chookaew, T., Kabbua, T., Thippated, A., & Prasertsan, P. (2018). Fumigant activity of volatile compounds of Streptomyces philanthi RM-1-138 and pure chemicals (acetophenone and phenylethyl alcohol) against anthracnose pathogen in postharvest chili fruit. Crop protection 103, 1-8.

Cai, Q., He, B., Kogel, K.-H., & Jin, H. (2018). Cross-kingdom RNA trafficking and environmental RNAi—nature's blueprint for modern crop protection strategies. Current opinion in microbiology 46, 58-64.

Capriotti, L., Baraldi, E., Mezzetti, B., Limera, C., & Sabbadini, S. (2020). Biotechnological approaches: gene overexpression, gene silencing, and genome editing to control fungal and oomycete diseases in grapevine. International Journal of Molecular Sciences 21, 5701.

Carmona-Hernandez, S., Reyes-Pérez, J. J., Chiquito-Contreras, R. G., Rincon-Enriquez, G., Cerdan-Cabrera, C. R., & Hernandez-Montiel, L. G. (2019). Biocontrol of postharvest fruit fungal diseases by bacterial antagonists: A review. Agronomy 9, 121.

Catara, V., Cubero, J., Pothier, J. F., Bosis, E., Bragard, C., Đermić, E., Holeva, M. C., Jacques, M.-A., Petter, F., & Pruvost, O. (2021). Trends in molecular diagnosis and diversity studies for phytosanitary regulated Xanthomonas. Microorganisms 9, 862.

Chethana, K. T., Jayawardena, R. S., Chen, Y.-J., Konta, S., Tibpromma, S., Phukhamsakda, C., Abeywickrama, P. D., Samarakoon, M. C., Senwanna, C., & Mapook, A. (2021). Appressorial interactions with host and their evolution. Fungal Diversity 110, 75-107.

Cluzet, S., Torregrosa, C., Jacquet, C., Lafitte, C., Fournier, J., Mercier, L., Salamagne, S., Briand, X., ESQUERRÉ‐TUGAYÉ, M. T., & Dumas, B. (2004). Gene expression profiling and protection of Medicago truncatula against a fungal infection in response to an elicitor from green algae Ulva spp. Plant, Cell & Environment 27, 917-928.

Coglianese, C., & Lazer, D. (2003). Management-based regulation: Prescribing private management to achieve public goals. Law & Society Review 37, 691-730.

Conway, W. S., Leverentz, B., Janisiewicz, W. J., Saftner, R. A., & Camp, M. J. (2005). Improving biocontrol using antagonist mixtures with heat and/or sodium bicarbonate to control postharvest decay of apple fruit. Postharvest Biology and Technology 36, 235-244.

da Costa Gonçalves, D., Ribeiro, W. R., Gonçalves, D. C., Menini, L., & Costa, H. (2021). Recent advances and future perspective of essential oils in control Colletotrichum spp.: A sustainable alternative in postharvest treatment of fruits. Food Research International 150, 110758.

Darshan, K., Vanitha, S., Venugopala, K., & Parthasarathy, S. (2019). Strategic eco-friendly management of post-harvest fruit rot in papaya caused by Colletotrichum gloeosporioides.

de Freitas, M. B., & Stadnik, M. J. (2012). Race-specific and ulvan-induced defense responses in bean (Phaseolus vulgaris) against Colletotrichum lindemuthianum. Physiological and Molecular Plant Pathology 78, 8-13.

de Oliveira Filho, J. G., Silva, G. d. C., Cipriano, L., Gomes, M., & Egea, M. B. (2021). Control of postharvest fungal diseases in fruits using external application of RNAi. Journal of food science 86, 3341-3348.

Dean, R., Van Kan, J. A., Pretorius, Z. A., Hammond‐Kosack, K. E., Di Pietro, A., Spanu, P. D., Rudd, J. J., Dickman, M., Kahmann, R., & Ellis, J. (2012). The Top 10 fungal pathogens in molecular plant pathology. Molecular plant pathology 13, 414-430.

Deng, L., Zeng, K., Zhou, Y., & Huang, Y. (2015). Effects of postharvest oligochitosan treatment on anthracnose disease in citrus (Citrus sinensis L. Osbeck) fruit. European Food Research and Technology 240, 795-804.

Diskin, S., Sharir, T., Feygenberg, O., Maurer, D., & Alkan, N. (2019). Fludioxonil–A potential alternative for postharvest disease control in mango fruit. Crop protection 124, 104855.

Dodd, J. C., Prusky, D., & Jeffries, P. (1997). Fruit diseases. The mango: Botany, production and uses, 257-280.

Dofuor, A. K., Quartey, N. K.-A., Osabutey, A. F., Antwi-Agyakwa, A. K., Asante, K., Boateng, B. O., Ablormeti, F. K., Lutuf, H., Osei-Owusu, J., & Osei, J. H. N. (2023). Mango anthracnose disease: the current situation and direction for future research. Frontiers in Microbiology 14, 1168203.

Droby, S., Wisniewski, M., Teixidó, N., Spadaro, D., & Jijakli, M. H. (2016). The science, development, and commercialization of postharvest biocontrol products. Postharvest Biology and Technology 122, 22-29.

Durán Zuazo, V. H., Rodríguez Pleguezuelo, C. R., Gálvez Ruiz, B., Gutiérrez Gordillo, S., & García-Tejero, I. F. (2019). Water use and fruit yield of mango (Mangifera indica L.) grown in a subtropical Mediterranean climate. International Journal of Fruit Science 19, 136-150.

Fiankor, D.-D. D., Curzi, D., & Olper, A. (2021). Trade, price and quality upgrading effects of agri-food standards. European Review of Agricultural Economics 48, 835-877.

Freeman, S., Katan, T., & Shabi, E. (1996). Characterization of Colletotrichum gloeosporioides isolates from avocado and almond fruits with molecular and pathogenicity tests. Applied and environmental microbiology 62, 1014-1020.

Freeman, S., Katan, T., & Shabi, E. (1998). Characterization of Colletotrichum species responsible for anthracnose diseases of various fruits. Plant disease 82, 596-605.

Freeman, S., Minz, D., Kolesnik, I., Barbul, O., Zveibil, A., Maymon, M., Nitzani, Y., Kirshner, B., Rav-David, D., & Bilu, A. (2004). Trichoderma biocontrol of Colletotrichum acutatum and Botrytis cinerea and survival in strawberry. European Journal of Plant Pathology 110, 361-370.

Freeman, S., & Shabi, E. (1996). Cross-infection of subtropical and temperate fruits byColletotrichumspecies from various hosts. Physiological and Molecular Plant Pathology 49, 395-404.

Freiesleben, S., & Jäger, A. (2014). Correlation between plant secondary metabolites and their antifungal mechanisms–a review. Med. Aromat. Plants 3, 2167-0412.1000154.

Gebremichael, D. E., Haile, Z. M., Negrini, F., Sabbadini, S., Capriotti, L., Mezzetti, B., & Baraldi, E. (2021). RNA interference strategies for future management of plant pathogenic fungi: Prospects and challenges. Plants 10, 650.

González-Fernández, J., & Hormaza, J. (2020). Pest And Diseases In Mango (Mangifera Indica L.).

Gottlieb, O. R., de MB Borin, M. R., & de Brito, N. R. S. (2002). Integration of ethnobotany and phytochemistry: dream or reality? Phytochemistry 60, 145-152.

Govender, V. (2004). Evaluation of biological control systems for control of mango post-harvest diseases. University of Pretoria (South Africa).

Govender, V., & Korsten, L. (2006). Evaluation of different formulations of Bacillus licheniformis in mango pack house trials. Biological control 37, 237-242.

Gutiérrez-del-Río, I., Fernández, J., & Lombó, F. (2018). Plant nutraceuticals as antimicrobial agents in food preservation: Terpenoids, polyphenols and thiols. International journal of antimicrobial agents 52, 309-315.

Hailu, G., & Derbew, B. (2015). Extent, causes and reduction strategies of postharvest losses of fresh fruits and vegetables–A review. Journal of Biology, Agriculture and Healthcare 5, 49-64.

Higuera, J. J., Garrido-Gala, J., Lekhbou, A., Arjona-Girona, I., Amil-Ruiz, F., Mercado, J. A., Pliego-Alfaro, F., Muñoz-Blanco, J., López-Herrera, C. J., & Caballero, J. L. (2019). The strawberry FaWRKY1 transcription factor negatively regulates resistance to Colletotrichum acutatum in fruit upon infection. Frontiers in Plant Science 10, 480.

Hu, D., Chen, Z. Y., Zhang, C., & Ganiger, M. (2020). Reduction of Phakopsora pachyrhizi infection on soybean through host‐and spray‐induced gene silencing. Molecular plant pathology 21, 794-807.

INADA, M., ISHII, H., CHUNG, W.-H., YAMADA, T., YAMAGUCHI, J. I., & FURUTA, A. (2008). Occurrence of strobilurin-resistant strains of Colletotrichum gloeosporioides (Glomerella cingulata), the causal fungus of strawberry anthracnose. 日本植物病理学会報 74, 114-117.

Janisiewicz, W. J., Leverentz, B., Conway, W. S., Saftner, R. A., Reed, A., & Camp, M. J. (2003). Control of bitter rot and blue mold of apples by integrating heat and antagonist treatments on 1-MCP treated fruit stored under controlled atmosphere conditions. Postharvest Biology and Technology 29, 129-143.

Jeevanantham, S., Praveen, A., Livitha, R., & Balamurugan, K. (2024). Post Harvest Anthracnose of Mango Caused by Colletotrichum gloeosporioides: A Review. Archives of Current Research International 24, 106-115.

Jeger, M., & Plumbley, R. (1990). The biology and control of Colletotrichum species on tropical fruit crops. Plant pathology 39, 343-366.

Johnny, L., Yusuf, U. K., & Nulit, R. (2011). Antifungal activity of selected plant leaves crude extracts against a pepper anthracnose fungus, Colletotrichum capsici (Sydow) butler and bisby (Ascomycota: Phyllachorales). African Journal of Biotechnology 10, 4157-4165.

Jugreet, B. S., Suroowan, S., Rengasamy, R. K., & Mahomoodally, M. F. (2020). Chemistry, bioactivities, mode of action and industrial applications of essential oils. Trends in Food Science & Technology 101, 89-105.

Kamle, M., & Kumar, P. (2016). Colletotrichum gloeosporioides: pathogen of anthracnose disease in mango (Mangifera indica L.). Current trends in plant disease diagnostics and management practices, 207-219.

Kefialew, Y., & Ayalew, A. (2008). Postharvest biological control of anthracnose (Colletotrichum gloeosporioides) on mango (Mangifera indica). Postharvest Biology and Technology 50, 8-11.

Kim, S. J., Ko, E. J., Hong, J. K., & Jeun, Y. C. (2018). Ultrastructures of Colletotrichum orbiculare in cucumber leaves expressing systemic acquired resistance mediated by Chlorella fusca. The plant pathology journal 34, 113.

Lakshmi, B., Reddy, P., & Prasad, R. (2011). Cross-infection potential of Colletotrichum gloeosporioides Penz. isolates causing anthracnose in subtropical fruit crops.

Lamichhane, J. R., Osdaghi, E., Behlau, F., Köhl, J., Jones, J. B., & Aubertot, J.-N. (2018). Thirteen decades of antimicrobial copper compounds applied in agriculture. A review. Agronomy for sustainable development 38, 28.

Lamine Senghor, A., Liang, W.-J., & Ho, W.-C. (2007). Integrated control of Colletotrichum gloeosporioides on mango fruit in Taiwan by the combination of Bacillus s ubtilis and fruit bagging. Biocontrol Science and Technology 17, 865-870.

Lax, C., Tahiri, G., Patiño-Medina, J. A., Cánovas-Márquez, J. T., Pérez-Ruiz, J. A., Osorio-Concepción, M., Navarro, E., & Calo, S. (2020). The evolutionary significance of RNAi in the fungal kingdom. International Journal of Molecular Sciences 21, 9348.

Lee, G.-W., Ko, J.-A., Oh, B.-T., Choi, J.-R., Lee, K.-J., Chae, J.-C., & Kamala-Kannan, S. (2012). Biological control of postharvest diseases of apples, peaches and nectarines by Bacillus subtilis S16 isolated from halophytes rhizosphere. Biocontrol Science and Technology 22, 351-361.

Lokare, P., Fatima, S., & Jagdale, P. (2021). A review on the management practices of Colletotrichum gloeosporioides (Penz.) Penz. & Sacc. causes anthracnose disease of mango. Int. J. Botany Stud 6, 742-746.

Lopes, D. B., & Berger, R. D. (2001). The effects of rust and anthracnose on the photosynthetic competence of diseased bean leaves. Phytopathology 91, 212-220.

López-Velázquez, J. G., Delgado-Vargas, F., Ayón-Reyna, L. E., López-Angulo, G., Bautista-Baños, S., Uriarte-Gastelum, Y. G., López-López, M. E., & Vega-García, M. O. (2021). Postharvest application of partitioned plant extracts from Sinaloa, Mexico for controlling papaya pathogenic fungus Colletotrichum gloeosporioides. Journal of Plant Pathology 103, 831-842.

Lum, M. S., & Norazira, M. (2011). Effects of hot water, submergence time and storage duration on quality of dragon fruit (Hylocereus polyrhizus). Journal of Agricultural Science 3, 146.

Mahto, B. K., Singh, A., Pareek, M., Rajam, M. V., Dhar-Ray, S., & Reddy, P. M. (2020). Host-induced silencing of the Colletotrichum gloeosporioides conidial morphology 1 gene (CgCOM1) confers resistance against Anthracnose disease in chilli and tomato. Plant Molecular Biology 104, 381-395.

Maqbool, M., Ali, A., Ramachandran, S., Smith, D. R., & Alderson, P. G. (2010). Control of postharvest anthracnose of banana using a new edible composite coating. Crop protection 29, 1136-1141.

MARAITE, H. (1987). Histopathology of cassava anthracnose disease caused by Colletotrichum gloeosporioides f. sp. manihotis. Parasitica 43, 3-21.

Marian, M., Ohno, T., Suzuki, H., Kitamura, H., Kuroda, K., & Shimizu, M. (2020). A novel strain of endophytic Streptomyces for the biocontrol of strawberry anthracnose caused by Glomerella cingulata. Microbiological research 234, 126428.

Martínez-Blay, V., Pérez-Gago, M. B., de la Fuente, B., Carbó, R., & Palou, L. (2020). Edible coatings formulated with antifungal GRAS salts to control citrus anthracnose caused by Colletotrichum gloeosporioides and preserve postharvest fruit quality. Coatings 10, 730.

Masyahit, M. (2009). The first report of the occurrence of anthracnose disease caused by Colletotrichum gloeosporioides (Penz.) Penz. & Sacc. on dragon fruit (Hylocereus spp.) in Peninsular Malaysia. American Journal of Applied Sciences 6, 902-912.

Mathews, D., Becker, J. O., & Tjosvold, S. A. (2014). Plant diseases. Contain. Nurs. Bus. Manag. Manual Univ. Calif. Agric. Nat. Resour. Publ 3540, 179-200.

Mewa-Ngongang, M., Du Plessis, H. W., Ntwampe, S. K. O., Chidi, B. S., Hutchinson, U. F., Mekuto, L., & Jolly, N. P. (2019). The use of Candida pyralidae and Pichia kluyveri to control spoilage microorganisms of raw fruits used for beverage production. Foods 8, 454.

Mishra, R., Joshi, R. K., & Zhao, K. (2018). Genome editing in rice: recent advances, challenges, and future implications. Frontiers in Plant Science 9, 1361.

Mishra, R., Mohanty, J. N., Chand, S. K., & Joshi, R. K. (2018). Can-miRn37a mediated suppression of ethylene response factors enhances the resistance of chilli against anthracnose pathogen Colletotrichum truncatum L. Plant Science 267, 135-147.

Mishra, R., Mohanty, J. N., Mahanty, B., & Joshi, R. K. (2021). A single transcript CRISPR/Cas9 mediated mutagenesis of CaERF28 confers anthracnose resistance in chilli pepper (Capsicum annuum L.). Planta 254, 5.

Mitra, S. (2014). Mango production in the world–present situation and future prospect. XXIX International Horticultural Congress on Horticulture: Sustaining Lives, Livelihoods and Landscapes (IHC2014): IV 1111,

Mohammed, A. (2013). An overview of distribution, biology and the management of common bean anthracnose. Journal of plant pathology and microbiology 4, 1-6.

Moral, J., Jurado-Bello, J., Sánchez, M. I., de Oliveira, R., & Trapero, A. (2012). Effect of temperature, wetness duration, and planting density on olive anthracnose caused by Colletotrichum spp. Phytopathology 102, 974-981.

Morkeliūnė, A., Rasiukevičiūtė, N., & Valiuškaitė, A. (2021). Meteorological conditions in a temperate climate for Colletotrichum acutatum, strawberry pathogen distribution and susceptibility of different cultivars to anthracnose. Agriculture 11, 80.

Mukherjee, S., & Litz, R. E. (2009). Introduction: botany and importance. In The mango: Botany, production and uses (pp. 1-18). CABI Wallingford UK.

Muntala, A., Norshie, P., Santo, K., & Saba, C. (2020). Colletotrichum gloeosporioides species complex: Pathogen causing anthracnose, gummosis and die-back diseases of cashew (Anacardium occidentale L.) in Ghana. European Journal of Agriculture and Food Sciences 2.

Nash, & Lucas. (1999). Stomatal penetration of cowpea (Vigna unguiculata) leaves by a Colletotrichum species causing latent anthracnose. Plant pathology 48, 777-784.

Nath, V., Kumar, G., Pandey, S., & Pandey, S. (2019). Impact of climate change on tropical fruit production systems and its mitigation strategies. Climate change and agriculture in India: Impact and adaptation, 129-146.

Nazzaro, F., Fratianni, F., Coppola, R., & De Feo, V. (2017). Essential oils and antifungal activity. Pharmaceuticals 10, 86.

Ncama, K., Mditshwa, A., Tesfay, S. Z., Mbili, N. C., & Magwaza, L. S. (2019). Topical procedures adopted in testing and application of plant-based extracts as bio-fungicides in controlling postharvest decay of fresh produce. Crop protection 115, 142-151.

Nelson, S. C. (2008). Mango anthracnose (Colletotrichum gloeosporiodes).

Niu, D., Hamby, R., Sanchez, J. N., Cai, Q., Yan, Q., & Jin, H. (2021). RNAs—a new frontier in crop protection. Current opinion in Biotechnology 70, 204-212.

Nowara, D., Gay, A., Lacomme, C., Shaw, J., Ridout, C., Douchkov, D., Hensel, G., Kumlehn, J., & Schweizer, P. (2010). HIGS: host-induced gene silencing in the obligate biotrophic fungal pathogen Blumeria graminis. The Plant Cell 22, 3130-3141.

Nunes, C. C., & Dean, R. A. (2012). Host‐induced gene silencing: a tool for understanding fungal host interaction and for developing novel disease control strategies. Molecular plant pathology 13, 519-529.

Paulert, R., Talamini, V., Cassolato, J., Duarte, M., Noseda, M., Smania Jr, A., & Stadnik, M. (2009). Effects of sulfated polysaccharide and alcoholic extracts from green seaweed Ulva fasciata on anthracnose severity and growth of common bean (Phaseolus vulgaris L.)/Die Wirkung von sulfonierten Polysacchariden und alkoholischen Extrakten aus der Grünalge Ulva fasciata auf den Anthracnosebefall und das Wachstum von Buschbonenpflanzen (Phaseolus vulgaris L.). Journal of Plant Diseases and Protection, 263-270.

Paull, R. E., Nishijima, W., Reyes, M., & Cavaletto, C. (1997). Postharvest handling and losses during marketing of papaya (Carica papaya L.). Postharvest Biology and Technology 11, 165-179.

Pavela, R., & Benelli, G. (2016). Essential oils as ecofriendly biopesticides? Challenges and constraints. Trends in Plant Science 21, 1000-1007.

Pehamberger, H., Steiner, A., & Wolff, K. (1987). In vivo epiluminescence microscopy of pigmented skin lesions. I. Pattern analysis of pigmented skin lesions. Journal of the American Academy of Dermatology 17, 571-583.

Peres, N., Timmer, L., Adaskaveg, J., & Correll, J. (2005). Lifestyles of Colletotrichum acutatum. Plant disease 89, 784-796.

Peritore, F. C. (2020). Colonization studies of Clavibacter michiganensis in fruit and xylem of diverse Solanum species.

Prakash, O. (2004). Diseases and disorders of mango and their management. In Diseases of Fruits and Vegetables Volume I: Diagnosis and Management (pp. 511-619). Springer.

Prakash, O., & Misra, A. (1993). Fungal diseases of subtropical fruits. Adv. Hort 3, 1275-1348.

Prakash, O., & Misra, A. (1999). Some economically important fungal diseases of mango and their integrated management. Biological Memoirs 25, 59-75.

Prakash, O., & Misra, A. (2001). Diseases of mango and their management. Diseases of fruits and vegetables and their management. Ed Thind TS, Kalyani Publishers, Ludhiana, India.

Pring, R., Nash, C., Zakaria, M., & Bailey, J. (1995). Infection process and host range of Colletotrichum capsici. Physiological and Molecular Plant Pathology 46, 137-152.

Prusky, D., Koblier, I., Ardi, R., Beno-Moalem, D., Yakoby, N., & Keen, N. (2000). Resistance mechanisms of subtropical fruits to Colletotrichum gloeosporioides. Colletotrichum: Host Specificity, Pathology, and Host-Pathogen Interaction, 232-244.

Qiao, L., Lan, C., Capriotti, L., Ah‐Fong, A., Nino Sanchez, J., Hamby, R., Heller, J., Zhao, H., Glass, N. L., & Judelson, H. S. (2021). Spray‐induced gene silencing for disease control is dependent on the efficiency of pathogen RNA uptake. Plant biotechnology journal 19, 1756-1768.

Ramos, L., Lara, S., McMillan, R., Jr, & Narayanan, K. (1991). Tip dieback of mango (Mangifera indica) caused by Botryosphaeria ribis.

Raveau, R., Fontaine, J., & Lounès-Hadj Sahraoui, A. (2020). Essential oils as potential alternative biocontrol products against plant pathogens and weeds: A review. Foods 9, 365.

Righini, H., Roberti, R., & Baraldi, E. (2018). Use of algae in strawberry management. Journal of Applied Phycology 30, 3551-3564.

Roberts, R. G., & Snow, J. (1984). Histopathology of cotton boll rot caused by Colletotrichum capsici. Phytopathology 74, 390-397.

Robertson, G. P., & Swinton, S. M. (2005). Reconciling agricultural productivity and environmental integrity: a grand challenge for agriculture. Frontiers in Ecology and the Environment 3, 38-46.

Sanchez Garcia, D. (2024). Mango Industry and the Importance of Using Organic Fertilizers for Export to the European Union.

Sandani, H., Ranathunge, N., Lakshman, P., & Weerakoon, W. (2019). Biocontrol potential of five Burkholderia and Pseudomonas strains against Colletotrichum truncatum infecting chilli pepper. Biocontrol Science and Technology 29, 727-745.

Sanders, G. M., Korsten, L., & Wehner, F. (2000). Survey of fungicide sensitivity in Colletotrichum gloeosporioides from different avocado and mango production areas in South Africa. European Journal of Plant Pathology 106, 745-752.

Sarkhosh, A., Schaffer, B., Vargas, A., Palmateer, A., Lopez, P., Soleymani, A., & Farzaneh, M. (2018). Antifungal activity of five plant-extracted essential oils against anthracnose in papaya fruit. Biological Agriculture & Horticulture 34, 18-26.

Saxena, A., Raghuwanshi, R., Gupta, V. K., & Singh, H. B. (2016). Chilli anthracnose: the epidemiology and management. Frontiers in Microbiology 7, 1527.

Senthil-Kumar, M., & Mysore, K. S. (2010). RNAi in plants: recent developments and applications in agriculture. Gene silencing: theory, techniques and applications, 183-199.

Shi, X.-C., Wang, S.-Y., Duan, X.-C., Wang, Y.-Z., Liu, F.-Q., & Laborda, P. (2021). Biocontrol strategies for the management of Colletotrichum species in postharvest fruits. Crop protection 141, 105454.

Shimshoni, J. A., Bommuraj, V., Chen, Y., Sperling, R., Barel, S., Feygenberg, O., Maurer, D., & Alkan, N. (2020). Postharvest fungicide for avocado fruits: antifungal efficacy and peel to pulp distribution kinetics. Foods 9, 124.

Shukla, P., Gundappa, T. F., & Kumari, N. (2020). Non-chemical Management of Postharvest Diseases of Mango. In Bio-management of Postharvest Diseases and Mycotoxigenic Fungi (pp. 89-102). CRC Press.

Siddiqui, M. W. (2018). Postharvest disinfection of fruits and vegetables. Academic Press.

Singh, D., & Sharma, R. (2018). Postharvest diseases of fruits and vegetables and their management. In Postharvest disinfection of fruits and vegetables (pp. 1-52). Elsevier.

Singh, D., Sharma, R. R., & Kesharwani, A. K. (2021). Postharvest Losses of Horticultural Produce. In Postharvest Handling and Diseases of Horticultural Produce (pp. 1-24). CRC Press.

Smith, B. J. (2008). Epidemiology and pathology of strawberry anthracnose: a North American perspective. HortScience 43, 69-73.

Spadaro, D., Torres, R., Errampalli, D., Everett, K., Ramos, L., & Mari, M. (2019). Pome fruits. In Postharvest pathology of fresh horticultural produce (pp. 55-110). CRC Press.

Spina, D., Zanchini, R., Hamam, M., Di Vita, G., Chinnici, G., Raimondo, M., Caracciolo, F., & D'Amico, M. (2024). Unveiling the exotic fascination of tropical fruits: the role of food values on consumer behavior towards mangoes. Journal of Agriculture and Food Research 15, 100956.

Sreenivasaprasad, S., & Talhinhas, P. (2005). Genotypic and phenotypic diversity in Colletotrichum acutatum, a cosmopolitan pathogen causing anthracnose on a wide range of hosts. Molecular plant pathology 6, 361-378.

Talhinhas, P., & Baroncelli, R. (2021). Colletotrichum species and complexes: geographic distribution, host range and conservation status. Fungal Diversity 110, 109-198.

Talón, E., Vargas, M., Chiralt, A., & González-Martínez, C. (2019). Antioxidant starch-based films with encapsulated eugenol. Application to sunflower oil preservation. Lwt 113, 108290.

Tamm, L., Thuerig, B., Apostolov, S., Blogg, H., Borgo, E., Corneo, P. E., Fittje, S., de Palma, M., Donko, A., & Experton, C. (2022). Use of copper-based fungicides in organic agriculture in twelve European countries. Agronomy 12, 673.

Tewari, S. (2008). Production of Quality Seed in Tree Species. CENTRE OF ADVANCED STUDIES IN PLANT PATHOLOGY.

Thiribhuvanamala, G., Parthiban, K., & Seenivasan, R. (2017). Major diseases affecting pulp wood trees and their management. Plantation and Agroforestry Pulpwood Value Chain Approach, 337.

Tripathy, A. P., Satapathy, R. R., & Rout, M. (2021). Management of Colletotrichum gloeosporioides causing papaya anthracnose with best resulting plant extract and bio-agents. Pharma Innov. J 10, 629-630.

Uluisik, S., & Seymour, G. B. (2020). Pectate lyases: Their role in plants and importance in fruit ripening. Food Chemistry 309, 125559.

Uysal, A., & Kurt, Ş. (2017). Influence of inoculum density, temperature, wetness duration, and leaf age on infection and development of spinach anthracnose caused by the fungal pathogen Colletotrichum spinaciae. European Journal of Plant Pathology 149, 1041-1052.

Vivekananthan, R., Ravi, M., Saravanakumar, D., Kumar, N., Prakasam, V., & Samiyappan, R. (2004). Microbially induced defense related proteins against postharvest anthracnose infection in mango. Crop protection 23, 1061-1067.

Waller, J. (1992). Colletotrichum diseases of perennial and other cash crops.

Wang, M., & Jin, H. (2017). Spray-induced gene silencing: a powerful innovative strategy for crop protection. Trends in microbiology 25, 4-6.

Wang, M., Weiberg, A., Lin, F.-M., Thomma, B. P., Huang, H.-D., & Jin, H. (2016). Bidirectional cross-kingdom RNAi and fungal uptake of external RNAs confer plant protection. Nature plants 2, 1-10.

Weisany, W., Samadi, S., Amini, J., Hossaini, S., Yousefi, S., & Maggi, F. (2019). Enhancement of the antifungal activity of thyme and dill essential oils against Colletotrichum nymphaeae by nano-encapsulation with copper NPs. Industrial Crops and Products 132, 213-225.

Wharton, P. S., & Diéguez-Uribeondo, J. (2004). The biology of Colletotrichum acutatum. Anales del jardín botánico de Madrid,

Wińska, K., Mączka, W., Łyczko, J., Grabarczyk, M., Czubaszek, A., & Szumny, A. (2019). Essential oils as antimicrobial agents—myth or real alternative? Molecules 24, 2130.

Yang, J., Zhao, X., Sun, J., Kang, Z., Ding, S., Xu, J.-R., & Peng, Y.-L. (2010). A novel protein Com1 is required for normal conidium morphology and full virulence in Magnaporthe oryzae. Molecular plant-microbe interactions 23, 112-123.

Yuan, G., Chen, X., & Li, D. (2016). Chitosan films and coatings containing essential oils: The antioxidant and antimicrobial activity, and application in food systems. Food Research International 89, 117-128.

Zhang, H., Mahunu, G. K., Castoria, R., Yang, Q., & Apaliya, M. T. (2018). Recent developments in the enhancement of some postharvest biocontrol agents with unconventional chemicals compounds. Trends in Food Science & Technology 78, 180-187.

Zhang, L., Song, L., Xu, X., Zou, X., Duan, K., & Gao, Q. (2020). Characterization and fungicide sensitivity of Colletotrichum species causing strawberry anthracnose in eastern China. Plant disease 104, 1960-1968.

Zhang, M., Liu, W., Li, C., Shao, T., Jiang, X., Zhao, H., & Ai, W. (2019). Postharvest hot water dipping and hot water forced convection treatments alleviate chilling injury for zucchini fruit during cold storage. Scientia Horticulturae 249, 219-227.

Zhang, S. X., O'donnell, K., & Sutton, D. A. (2015). Fusarium and other opportunistic hyaline fungi. Manual of clinical microbiology, 2057-2086.

Zulfiqar, M., Brlansky, R., & Timmer, L. (1996). Infection of flower and vegetative tissues of citrus by Colletotrichum acutatum and C. gloeosporioides. Mycologia 88, 121-128.

Downloads

Published

2024-11-29

How to Cite

MUSTAFA, G., IMRAN, M., NADEEM, S., AHMAD, M., IQBAL, A., ALI, I., HASNAIN, M., MANN, N., HUSSAIN, R., AKRAM, M., & HAMZA, M. (2024). MANAGEMENT OF MAJOR PRE AND POSTHARVEST FUNGAL DISEASE (ANTHRACNOSE) OF MANGO FRUITS – A REVIEW. Biological and Clinical Sciences Research Journal, 2024(1), 1317. https://doi.org/10.54112/bcsrj.v2024i1.1317

Most read articles by the same author(s)

<< < 1 2 3 4 5 6 7