Introduction

Endophthalmitis is the inflammation of the inner layers of the eye. This inflammation occurs when infectious organisms invade the inside of the eye and cause a buildup of fluid in the vitreous and aqueous fluids (1, 2). Endophthalmitis is a critical condition in ophthalmology that necessitates immediate medical intervention and treatment to preserve vision and maintain the eye's integrity. Bacteria are the primary etiological agents of endophthalmitis, with fungi being the second most prevalent cause and parasites being less frequently implicated (3). The presence of bacteria and their toxins triggers an inflammatory response that results in rapid and irreversible harm to photoreceptors and other cells in the retina (4, 5). Two distinct forms of endophthalmitis can be distinguished based on how the bacteria enter the eye: exogenous and endogenous. Exogenous endophthalmitis can be classified as post-operative endophthalmitis or post-traumatic endophthalmitis, depending on the cause. Postoperative endophthalmitis is the most prevalent type of endophthalmitis (5, 6). The incidence of endophthalmitis in Pakistan ranges from 5.1% to 7.5% (6). The prevalence of postoperative endophthalmitis, as proven by culture, was 10.88%, marking the highest recorded rate globally (7).

According to a study, 127 patients were included, and one affected eye with endophthalmitis. The prevalent microorganisms responsible were Streptococcus (21.4%), followed by coagulase-negative Staphylococcus (14.5%), Aspergillus (6.9%), and Bacillus cereus (5.3%). Around 90% of cases of post-operative endophthalmitis occur following cataract surgery, which is the most prevalent type of intraocular surgery (8). The main focus of treatment is to identify the causative organism, as around 30% of patients with postoperative endophthalmitis do not have positive culture results in (9). Collecting aqueous or vitreous fluid samples at the initial visit is necessary for diagnostic procedures such as gram staining, culture, and polymerase chain reaction analysis. However, intravitreal antibiotics and systemic therapy have been commonly used to treat endophthalmitis (10). As a result, more aggressive interventions may be required to restore vision and protect the eye. Initially created for managing vitreoretinal diseases, vitrectomy has become a promising additional treatment for postoperative endophthalmitis (11). It provides various potential advantages, such as eliminating inflammatory waste, decreasing bacterial presence, and aiding in administering antibiotics to the affected intraocular tissues (12, 13).

Endophthalmitis, marked by intense inflammation inside the eye, presents a complex problem for doctors since it develops quickly, can cause vision loss, and has few therapeutic choices. The timing of vitrectomy in the context of postoperative endophthalmitis remains the subject of debate and ongoing investigation. However, due to a lack of local literature on this subject, the rationale of this study is to visualise the outcome following pars plana vitrectomy in post-operative endophthalmitis patients at our hospital setup.

Methodology

Forty patients were selected for this interventional study conducted in the eye ward of Hayatabad Medical Complex, Peshawar, Pakistan, from September 2023 to February 2024 after obtaining ethical clearance from the hospital. The study comprised patients with clinically confirmed acute
postoperative endophthalmitis following cataract surgery with visual acuity of light perception on the scan. Patients with endogenous or traumatic other endophthalmitis were not included in the study. Vancomycin and amikacin intravitreal injections were given together with a standard 3-port pars plana vitrectomy. Post-operatively, the patients were evaluated in the 12th week following PPV. Snellen charts were used to measure visual acuity during these exams. Additional examinations included a fundus examination and a thorough slit lamp. SPSS 23 was used to analyse the collected data. Chi-Square test was deployed for the association, keeping the value of P significant at < 0.05.

Results

The mean age in our study was 58.30 ±10 years. The mean duration between surgery and PPV was 9.23±2.90 days. The frequency of patients > 55 years old was higher than those aged 40 to 55. The frequency of male patients was 21 (52.5%), while that of female patients was 19 (47.5%). Duration of presentation was ≤ 5 days in 25 (52.5%) patients while > 5 days in 15 (37.5%) patients. The post-follow-up VA improvement was 6/18 or better in 5 (15%) patients and 6/60 or better in 9 (22.5%) patients; we observed that 14 (35%) could count their fingers, hand movement visibility was 7 (17.5%) while 4 (10%) patients showed no improvement in visual acuity. Post-follow-up improvement in VA was not notably linked with age distribution.

Table 2 Association of improvement in VA with age

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Age distribution (Years)</th>
<th>Total</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Post-follow-up improvement in Visual Acuity</td>
<td>40 to 55</td>
<td>> 55</td>
<td></td>
</tr>
<tr>
<td>6/18 or better</td>
<td>4</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>66.7%</td>
<td>33.3%</td>
<td>100.0%</td>
</tr>
<tr>
<td>6/60 or better</td>
<td>5</td>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>55.6%</td>
<td>44.4%</td>
<td>100.0%</td>
</tr>
<tr>
<td>CF</td>
<td>3</td>
<td>11</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>21.4%</td>
<td>78.6%</td>
<td>100.0%</td>
</tr>
<tr>
<td>HM</td>
<td>2</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>28.6%</td>
<td>71.4%</td>
<td>100.0%</td>
</tr>
<tr>
<td>No improvement</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>0.0%</td>
<td>100.0%</td>
<td>100.0%</td>
</tr>
<tr>
<td>Total</td>
<td>14</td>
<td>26</td>
<td>40</td>
</tr>
</tbody>
</table>

Discussion

Even though infected endophthalmitis is a relatively uncommon complication after eye surgery, it is a severe condition that has the potential to impair vision and calls for treatment that is both quick and effective (14). Surgery for cataracts is one of the surgical procedures that is performed the most frequently all over the world. It has been observed that the frequency of endophthalmitis following cataract surgery performed with contemporary phacoemulsification ranges from 0.02% to 0.08% (15).

The Endophthalmitis Vitrectomy Study (EVS) has been considered one of the most critical research investigations on the treatment of endophthalmitis ever since it was conducted in the middle of the 1990s. To create guidelines for the care of infectious endophthalmitis, the EVS consisted of a multicenter, randomised, observational clinical investigation that involved 420 consecutive instances of endophthalmitis. The EVS was used to develop guidelines. In cases where visual acuity (VA) was higher than light perception (LP), the researchers concluded that vitrectomy did not provide any benefits (16).

Patients with endophthalmitis who appear with VAs better than LP have been doing vitrectomy procedures at an increasing rate, even though this approach violates the criteria established by the EVS. Primary vitrectomy was conducted in 41% of endophthalmitis patients in the United States between 2003 and 2004, based on information from the Medicare database. Individuals with an initial VA better than LP were eligible for the procedure (17). According to another survey conducted in Canada, most vitreoretinal surgeons in that country did not precisely adhere to the standards established by the EVS. Specifically, 56.7% of the surgeons in Canada performed primary vitrectomy on individuals suffering from endophthalmitis who had a VA of hand movement (HM) instead of managing them with

intravitreal antibiotics solely (36.7%). It is quite probable that this trend was influenced by the significant advancements in vitrectomy technology that have occurred since the 2000s. These advancements include sutureless small-gauge vitrectomy plus the application of a wide-viewing viewing system (18).

In our study, 40 patients who had post-procedure endophthalmitis were selected. We observed that the mean age was 58.30±10 years, while the mean duration between surgery and PPV was 9.23±2.9 days. In our study, we observed that the frequency of male patients was higher than that of female patients. A study conducted in Pakistan reported similar demographic details; the mean age they reported was 54.50±14.14 years, while the mean time between surgery and PPV was 7.03±1.97 days (19).

At post-follow-up, about 6 (15%) patients in our study had visual acuity of 6/18 or better, and nine (22.5%) had VA of 6/60 or better (14) (35%) patients could count their fingers, while 7 (17.5%) patients could view their hand movements. We observed no improvement in 4 (10%) patients. Similar to our observations, a study reported that 17.64% of patients had VA 6/18 or better post-follow-up, while 26.46% of patients had VA 6/60 or better. They noted that 9.37% of patients did not have improvement in VA (20).

Conclusion

We conclude that PPV can improve visual acuity in post-operative endophthalmitis patients. We recommend clinical trials across multiple hospitals to further explore this outcome.

Declarations

Data Availability statement
All data generated or analysed during the study are included in the manuscript.

Ethics approval and consent to participate
Approved by the department concerned. (HMC-IRB/10-6-23/221)

Consent for publication
Approved

Funding
Not applicable

Conflict of interest
The authors declared the absence of a conflict of interest.

Author Contribution

ARIF KHAN Kundi
Coordination of collaborative efforts.

Tariq Shahnam
Study Design, Review of literature.

OBAID ULLAH AHMAD
Data entry and Data analysis, drafting article.

Shahid Rauf
Manuscript revisions, critical input.

References

15. Results of the Endophthalmitis Vitrectomy Study A randomized trial of immediate vitrectomy and of

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. © The Author(s) 2024.