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Abstract: PCOS is a heterogeneous disorder caused by reproductive and immuno-metabolic abnormalities. It is accompanied by 

dysbiosis of the human gut microbial community. Bacterial enzyme β-glucuronidase (GUSB) performs deglucuronidation of 

conjugated estrogen, resulting in abnormal conc. of this hormone in females and PCOS incidence. Present study was initiated to 

characterize the GUSB enzyme in bacteria associated with the gut of healthy and PCOS individuals. Enzyme sequences from ten 

bacteria were retrieved from the UniProt database and characterized by CELLO, Protparam, SOPMA, AlphaFold, and HDOCK 

tools. Analysis revealed the localization of enzymes in periplasm and cytoplasm in most bacteria and, in addition to this, the outer 

membrane only in B. intestinalis. PCOS-associated enzymes were alkaline, with high thermostability and in-vitro stability 

compared to healthy gut bacterial enzymes. Secondary (2D) and tertiary (3D) structures were comparable in enzymes of both these 

groups. The affinity of GUSB was higher for catechin in PCOS-associated bacteria than bacteria found in a healthy gut. Hence, 

catechin can be an effective ligand for inhibiting the GUSB enzyme in PCOS patients. 
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Introduction  

 

Polycystic ovary syndrome (PCOS) is an endocrinopathy in 

reproductively mature women. Infertility, polycystic 

ovaries, irregular menses, follicle development arrest, 

hyperinsulinemia, and hirsutism are the hallmarks of this 

disease (Khomami et al., 2015; Zehra and Khursheed, 

2018). Globally, its incidence rate has been reported to be 

4-21% (Zhang et al., 2019). It is a multifactorial trait 

contributed by environmental, epigenetic, and polygenic 

factors. Insulin resistance and obesity may aggravate this 

disease (Chaudhuri, 2023; Kicińska et al., 2023). In addition 

to these factors, enzymes and metabolites of bacteria 

associated with the human gastrointestinal tract (GIT) might 

also trigger PCOS (Parker et al., 2022). 

The Microecosystem of the human intestine comprises of 

100 trillion bacteria belonging to 1000-1500 species (Gill et 

al., 2006). Human transcriptomic analysis revealed 4 x 106 

mRNAs belonging to these gut microbes (Sasaki, 2005). 

This large number of transcripts clearly indicates the 

possible role of these gut microbes in human metabolism, 

immunity, nutrition, and physiological functions (Zhao et 

al., 2020). Under normal circumstances, the human GIT is 

mostly occupied by Bifidobacterium bifidum W23, B. lactis 

W51, Lactobacillus brevis W63, L. lactis W58 and L. casei 

W56 (Siddiqui et al., 2022). This composition is not always 

constant. Instead, it changes in response to antibiotic 

treatment and different pathological conditions called 

dysbiosis (Rueb et al., 2021). Hence, these microbes might 

serve as biomarkers for the diseases. PCOS is also always 

accompanied by dysbiosis. In most of the literature, 

Bacteroidaceae and Faecalibacterium prausnitzii have 

been reported to increase in number in PCOS patients gut 

(Chu et al., 2020; Guo et al., 2022; Huang et al., 2022; Liang 

et al., 2021). Bacteroides vulgatus and B. fragilis were also 

found to be the most abundant (Lindheim et al., 2017; Qi et 

al., 2019). Other reported bacteria abundantly found in 

PCOS patient's gut include bacteria belonging to 

Bacteroidaceae, Lactobacillaceae, Lachnospiraceae, 

Erypelotrichidae, Clostridiaceae, orphyromonadaceae and 

Ruminococcaceae (Liu et al., 2017). 

The β-glucuronidase (GUSB) enzyme is encoded by uidA 

bacterial gene which catalyzes the hydrolysis of S- and O- 

glycosidic moieties (Awolade et al., 2020; Muccee et al., 

2022). In human, the neurotransmitters, bilirubin, and 

hormones like estrogens are conjugated in the liver by 

glucuronidation, which alters the polarity of these 

molecules. Thus helping in their excretion from the body 

(Thackray, 2019). However, β-glucuronidase, also known as 

GIT microbiome encoded GUS enzyme (GUSOME), tends 

to deconjugate these molecules, especially estrogens in the 

intestine. This deglucuronidation results in activated 

estrogens, i.e., aglycone estradiol and aglycone estrone. Both 

these forms enter the blood circulation via mucosa and cause 

PCOS-associated estrogen dominance (Flores et al., 2012). 

This GUSB enzyme from gut microbes can be used as a 

diagnostic and prognostic biomarker, as its concentration 

has been reported to be higher in PCOS patients than in 

healthy individuals (Patel et al., 2023). 

The GUSOME is expressed not only in probiotics but also 

in bacteria inhabiting the PCOS patients. Considering the 
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role of GUSB in PCOS, we have initiated a present research 

project targeting this enzyme in PCOS and healthy human 

gut associated bacteria. This study might help us identifying 

the GUSB characteristics that can be recommended as a 

prognostic and diagnostic biomarker for PCOS.  

 

Methodology 

To analyze the variation in GUSB enzyme among the 

bacteria of healthy individuals and PCOS patients, five 

probiotics and five PCOS patients gastrointestinal tract 

(GIT) associated bacteria were selected. 

Retrieving the GUSB sequences from the Uniprot 

database 

Sequences of GUSB from the bacteria Lacticaseibacillus 

rhamnosus, L. casei, Bifidobacterium breve, 

Bifidobacterium longum subsp. infantis, B. longum subsp. 

longum, Bacteroides vulgatus, B. intestinalis, and 

Faecalibacterium prausnitzii were retrieved from the 

UniProt database (https://www.uniprot.org, accessed Sep. 

2023). Bacterial names, accession numbers, and sequences 

of GUSB are shown in Supplementary Data Figure 1. 

Determining the sub-cellular localization of GUSB 

using the CELLO tool 

To determine the variation in enzyme sub-cellular location 

between bacteria from healthy individuals and PCOS 

patients, the sub-cellular localization predictor CELLO tool 

(http://cello.life.nctu.edu.tw, accessed in Sep. 2023) was 

consulted. The tool predicted the localization scores in five 

locations, i.e., periplasm, cytoplasm, outer membrane, 

extracellular, and inner membrane. 

Prediction of physicochemical properties of GUSB 

using ProtParam 

To comprehend the physicochemical properties of GUSB 

in the present study bacteria, the Expasy ProtParam tool 

(https://web.expasy.org/protparam/, accessed in Sep. 2023) 

was employed. Tool predicted the enzyme's molecular 

weight, isoelectric point (pI), aliphatic index, instability 

index, and grand average of pathogenicity (GRAVY). 

Predicting the secondary structure using the SOPMA 

tool 

The secondary configuration (2D) of GUSB was predicted 

in terms of α-helix, extended strand, β-turn and random coil 

using SOPMA secondary structure prediction method 

(https://npsapbil.ibcp.fr/cgibin/npsa_automat.pl?page=/NPS

A/npsa_sopma.html, accessed in Sep. 2023). 

Assessment of three-dimensional 

structure using AlphaFold  

To compare the level of folding of GUSB, the AlphaFold 

protein structure database (https://alphafold.ebi.ac.uk/, 

accessed in Sep. 2023) was consulted, and 3D structures 

were retrieved. 
Phylogeny prediction using Phylogeny.fr 

Analysis of the evolutionary relationship between the 

present study bacterial GUSB enzymes, a phylogenetic tree 

was constructed using Phylogeny.fr 

(www.phylogeny.fr/phylogeny.cgi, accessed in Sep. 2023). 

The advanced mode, which comprised of four steps, was 

selected for this task. i.e., multiple MUSCLE alignments, 

alignment curation via Gblocks, phylogenetic tree 

construction by PhyML, and tree visualization by TreeDyn. 

The bootstrapping procedure with 100 bootstraps was 

selected as statistical branch support along with the default 

setting of the substitution model. 

Docking analysis of GUSB with 

flavonoid inhibitor (catechin) 

An HDOCK server was used to determine the tendency of 

GUSB binding with flavonoid inhibitor catechin. This 

server is a hybrid algorithm of template-based modeling and 

ab initio free docking (Available at hdock.phys.hust.edu.cn, 

accessed in Sep. 2023). The structure of catechin in sdf 

format was downloaded and converted into pdb format 

using OPENBABEL, a chemical file format converter 

(www.cheminfo.org/Chemistry/Cheminformatics/FormatC 

onverter/index.html, accessed in Sep. 2023). 

Results 

Sub-cellular localization 

The sub-cellular location assessment revealed that some of 

the PCOS patients associated bacterial GUSB was localized 

in the outer membrane (B. intestinalis) and extracellular (F. 

prausnitzii C) in addition to cytoplasm and periplasm like 

healthy individual’s bacterial enzyme. In the case of F. 

prausnitzii B, the enzyme was only localized in the 

periplasm, while in B. breve, B. longum subsp. infantis and 

B. intestinalis, the location was cytoplasmic. L. rhamnosus, 

L. casei, B. longum subsp. longum, B. vulgatus, 

F. prausnitzii A, and F. prausnitzii C, the enzyme was 

present in both the periplasm and cytoplasm (Table 1).

Table 1: Prediction of sub-cellular localization of β-glucuronidase (GUSB) in present study bacteria 

Bacterium Periplasm Cytoplasm Outer membrane Extracellular Inner membrane 

Healthy individuals 

L. rhamnosus 2.440 1.402 0.789 0.311 0.058 

L. casei 2.378 1.608 0.638 0.324 0.052 

B. breve 0.273 3.248 0.641 0.788 0.050 

B. longum subsp. infantis 0.248 2.994 0.801 0.912 0.045 

B. longum subsp. longum 2.735 1.870 0.041 0.315 0.038 

PCOS individuals 

B. vulgatus 1.832 1.205 0.928 0.656 0.379 

B. intestinalis 0.688 2.310 1.130 0.557 0.316 

F. prausnitzii A 2.574 1.680 0.314 0.344 0.087 

F. prausnitzii B 3.691 0.894 0.139 0.218 0.059 

F. prausnitzii C 1.276 2.011 0.273 1.147 0.293 
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Physicochemical properties 

Analysis of physicochemical properties revealed significant 

variation in molecular weight between the healthy 

individuals and PCOS individuals' gut bacteria i., e., ranging 

between 22421.28 to 66842.30 and 67535.00 to 105870.59, 

respectively. The pI was highest in B. vulgatus (8.46) 

followed by F. prausnitzii A (6.27) and B. intestinalis (6.23). 

In the remaining bacteria, approximately similar values 

were observed (4.98 to 5.47). The highest aliphatic index 

value was 79.89 in (B. intestinalis), and the lowest was 

55.98 in F. prausnitzii C. In the rest of the cases, it ranged 

between 70.66 and 75.98. Maximum and minimum values 

of the instability index were found to be 39.59 and 27.89, 

respectively. B. intestinalis and F. prausnitzii B exhibited 

the smallest values for GRAVY i. e., -0.373 and -0.369, 

respectively, while the most enormous value was observed 

in F. prausnitzii C (-0.606) (Table 2).

Table 2: Prediction of physicochemical properties of GUSB using the ProtParam tool 

Bacteria Mol. wt. pI Aliphatic index Instability index GRAVY 

Healthy individuals 

L. rhamnosus 68627.97 5.35 71.01 30.50 -0.502 

L. casei 68842.30 5.45 70.66 34.77 -0.509 

B. breve 66618.37 4.98 72.66 31.49 -0.482 

B. longum subsp. infantis 66562.31 5.00 72.49 30.62 -0.481 

B. longum subsp. longum 22421.28 5.00 59.13 31.91 -0.499 

PCOS individuals 

B. vulgatus 109987.51 8.46 73.70 29.72 -0.490 

B. intestinalis 105870.59 6.23 79.89 27.89 -0.373 

F. prausnitzii A 72425.93 6.27 75.98 32.34 -0.414 

F. prausnitzii B 67535.00 5.34 74.03 35.75 -0.369 

F. prausnitzii C 14397.28 5.47 55.98 39.59 -0.606 

 

Secondary structure 

Maximum deviation was observed between B. longum 

subsp. longum and F. prausnitzii C in terms of α-helix, 

extended strand, β-turn, and random coil. The α-helix values 

were observed to be highest in F. prausnitzii C (48.36) and 

B. longum subsp. longum (42.05), followed by values 

ranging between 22.22 and 27.42 for all the remaining 

bacteria. The extended strand, β-turn, and random coil 

values were observed to be 10.66 to 28.48, 3.59 to 7.98, and 

33.61 to 47.27, respectively (Table 3).

 Table 3: Prediction of the 2D configuration of GUSB in present study bacteria using the SOPMA tool 

Bacterium α-helix (%) Extended strand (%) β-turn (%) Random coil (%) 

  Healthy individuals 

L. rhamnosus 26.53 23.88 7.63 41.96 

L. casei 26.20 23.05 6.30 44.44 

B. breve 23.04 23.89 7.17 45.90 

B. longum subsp. infantis 23.04 22.35 7.34 47.27 

B. longum subsp. longum 42.05 15.38 3.59 38.97 

PCOS individuals 

B. vulgatus 24.40 21.36 7.54 46.70 

B. intestinalis 26.42 22.27 7.75 43.56 

F. prausnitzii A 22.22 28.48 7.98 41.31 

F. prausnitzii B 27.42 22.74 6.69 43.14 

F. prausnitzii C 48.36 10.66 7.38 33.61 
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Figure 1: Assessment of secondary structure (2D) of β-glucuronidase in present study bacteria using SOPMA tool

The simplest structure was observed in F. prausnitzii C, 

followed by B. longum subsp. longum. Bacteria found in 

gut of PCOS patients exhibited highly complex folding 

pattern of β-glucuronidase compared to healthy 

individuals' bacteria (Figure 2).  

Figure 2: Prediction of three dimensional (3D) configuration in GUSB in present study bacteria using AlphaFold 

database A: L. rhamnosus, B: L. casei, C: B. breve, D: B. longum subsp. infantis, E: B. longum subsp. longum, F: B. 

vulgatus, G: B. intestinalis, H: F. prausnitzii A, I: F. prausnitzii B, J: F. prausnitzii C 

Phylogeny 

The phylogenetic relationship between the present study 

bacteria with reference to the GUSB enzyme revealed that 

the L. rhamnosus and L. casei were closely related because 

they shared the same clade. Fork of these bacteria also 

originated from the same point as that of B.

 

longum subsp. They were long, representing their 

closeness compared to the rest of the bacterial enzyme. 

The enzymes of B. breve and B. longum subsp. infantis is 

also shared with B. vulgatus. All three strains of F. 

prausnitzii showed divergence during the evolution of 

GUSB (Figure 3).  

Figure 3: Phylogenetic tree constructed concerning β-glucuronidase to interpret the relation between the bacteria 

documented in the present study 
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Binding affinity of GUSB with catechin inhibitor 

The docking analysis of GUSB with flavonoid ligand 

catechin revealed the highest affinity for ligand in all the 

PCOS-associated bacteria (docking score = -203.65 to - 

216.54) except in F. prausnitzii A0A564U4J0 (score = - 

182.48) (Figure 4, Table 4). 

Figure 4: Assessment of binding affinity of GUSB enzyme documented in the present study with catechin 

A: L. rhamnosus, B: L. casei, C: B. breve, D: B. longum subsp. infantis, E: B. longum subsp. longum, F: B. vulgatus, G: B. 

intestinalis, H: F. prausnitzii A, I: F. prausnitzii B, J: F. prausnitzii C 

 

Table 4: Docking score, confidence score, and ligand rmsd predicted for GUSB enzymes documented in the present study, 

using HDOCK server 

Bacterium Docking score Confidence score Ligand rmsd (Å) 

Healthy individuals 

L. rhamnosus -180.03 0.6458 27.05 

L. casei -175.75 0.6260 18.84 

B. breve -155.10 0.5255 20.49 

B. longum subsp. infantis -197.30 0.7203 30.61 

B. longum subsp. longum -147.51 0.4876 27.59 

PCOS individuals 

B. vulgatus -203.65 0.7452 30.21 

B. intestinalis -216.54 0.7910 22.16 

F. prausnitzii A -205.79 0.7532 29.93 

F. prausnitzii B -215.37 0.7871 12.29 

F. prausnitzii C -182.48 0.6569 33.90 

Discussion 

 

The present study deals with characterizing the GUSB 

enzyme from bacteria living in the gut of healthy and PCOS-

infected individuals. Analysis revealed diversity in this 

enzyme, which might be due to antibiotics, diet, and 

pathological conditions (Faith et al., 2011). Several studies 

are reported in the literature which characterized this 

bacterium in human gut microbes like Ruminococcus 

gnavus, Streptococcus equi, Staphylococcus pasteuri, 

Lactobacillus and Enterococcus (Beaud et al., 2005; Cheng 

et al., 2015; Krahulec and Krahulcová, 2007; Krahulec et 

al., 2010; Mroczynska and Libudzisz, 2010; Wei et al., 

2018). One study has also reported the in silico 

characterization of this enzyme and analyzed diversity in 

breast cancer patients with GIT bacteria (Muccee et al., 

2022). However, no one has ever studied the diversity of 

GUSB among the bacteria of healthy and PCOS-affected 

individuals.  

The 3D configuration of three different forms of GUSB 

from F. prausnitzii exhibited complex folding in two cases, 

i.e.. A0A173S5S4 and A0A6A8KDD0 are in accordance 

with this enzyme's previously reported crystal structure. 

However, in the case of A0A564U4J0, the predicted 

structure is inconsistent with previous literature (Pellock et 

al., 2019).   

Molecular weight was higher in B. vulgatus, B. intestinalis, 

and F. prausnitzii A than in healthy individuals' bacteria, 

i.e., 109987.51, 105870.59, and 72425.93. However, in the 

GUSB variant (A0A6A8KDD0), the molecular weight 

(67535.00) was comparable with the enzymes of healthy 

individual microbes. GUSB was acidic in healthy individual 

bacteria, while in PCOS patients, it was alkaline in B. 

vulgatus, B. intestinalis, and F. prausnitzii A (Righetti, 

2004). The aliphatic index was comparatively higher in 

enzymes of PCOS-associated bacteria except F. prausnitzii 

C, revealing their higher thermostability (Pack and Yoo, 

2004). Instability index values below 40 indicate their in-
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vitro stability (Gamage et al., 2019). The highest and lowest 

stabilities were observed in B. intestinalis and F. prausnitzii 

(A0A6A8KDD0) enzymes. GRAVY assessment predicted 

the non-polar nature of GUSB in all the cases (Babnigg and 

Joachimiak, 2010).  

Flavonoid inhibitor catechin was selected to perform a 

docking analysis of GUSB (Awolade et al., 2020). High 

affinity for catechin in most PCOS bacteria associated with 

GUSB shows that this molecule can effectively inhibit this 

enzyme from working, thus preventing the pathological 

effects caused by its activity.  

Conclusion 

As per the diversity of GUSB enzymes, it seems 

complicated to manipulate this enzyme to prevent PCOS-

associated metabolic dysregulation. However, the structure 

and other properties predicted in the present study might 

help design personalized treatment of PCOS. 
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