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Abstract: The field of biotechnology has extraordinary influence on science, law, the administrative condition 

social insurance, and business throughout the world. As the starting of agriculture, people have been manipulating 

crops to improve the yield and quantity. Product yields throughout the world are essentially diminished by the 

activity of herbivorous insects, pathogens, and parasites. Natural environmental stresses make this circumstance 

significantly worse. Biotechnology can be used to increase the yield of food crops, to improve biotic and abiotic 

stress tolerance, to modify the traits of the plant (e.g. oil content, percentage of lignin, cell structure), to make the 

conversion to liquid biofuels more efficient. Various genes have been discovered for biotic and abiotic stress 

tolerance. The genes discovered for biotic stress are aryloxyalkanoate, dioxygenase, enzymes (aad-1), nitrilase, 

Cry1Ac, Cry2AB, GTgene, AFP (anti-freezing protein gene) gene, Chitinase II and III gene, and Rps1-k. The genes 

discovered for abiotic stress are SgNCED1, SgNCED1, USP2, HSP70, BADH, and ALO, PVNCED1, HVA1, 

LeNCED1. CRISPRs (clustered regularly interspaced short palindromic repeats) are the short DNA sequences 

present in bacteria and archaeal genomes which are now currently used by researchers to edit the genome. In 

different plant species (calli, leaf discs) protoplasts have been successfully used to edit their genome through 

CRISPR/Cas9 system. The aims of the applications are to increase resistance to abiotic or biotic stress, to engineer 

metabolic pathways, and to increase grain yield. Incorporation of modern biotechnology, with regular traditional 

practices in a sustainable way, can fulfill the objective of achieving food security for the present and as well as in 

future. 
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Introduction 

The Hungarian engineer, Karl Erky, coined the term 

biotechnology in 1917 to describe a method for large-

scale pig production. In order to obtain useful goods, 

biotechnology can be characterized as the use of 

technology utilizing living organisms (Christou and 

Twyman, 2004; Strange and Scott, 2005). 

Researchers have found how genes could be 

exchanged from particular living organism to another 

organism. This may be known as hereditary control, 

hereditary building alternately hereditary upgrade 

(Key et al., 2008; Ramessar et al., 2007). In any case 

of the term, by including genes (DNA) starting with 

in turn organism, the procedure empowers the 

exchange for suitable characteristics (such as 

improvement for disease control) in a plant, animal or 

microorganism. Conventional breeding include 

collection of entity plants or animals based on visible 

or measurable qualities (Zhang et al., 2012; Zhu et 

al., 2013). By examining the DNA of an organism, 

researchers can utilize molecular markers to choose 

plants or animals that possess an advantageous gene, 

even in the deficiency of a visible trait. Thus, 

breeding is more precise and useful. For example, 

those universal foundation of tropical agribusiness 

need utilized molecular markers for disease-resistant 

(Dangl et al., 2013; Huot et al., 2014; Yuan et al., 

2011). Tissue culture may be used for producing 

plants from disease free plant. This method 

empowers the propagation cost of crop planting 

material. Citrus, pineapples, avocados, mangoes, 

bananas, papaya cotton and maize have been grown 

through tissue culture (Bebber et al., 2013; Savary et 

al., 2006). There is use of transgenic techniques to 

produce plants for inducing resistance against 

different living organisms for example viruses, fungi, 

bacteria, nematodes, insects as biotic stress. Abiotic 

stress is those damaging impact from non-living 

states, which is all around living organism (Mundt, 

2014; Steuernagel et al., 2016). Abiotic stress like 

dry season (water stress), unreasonable watering 

system (water logging), high or low temperatures 

(cold, hilling and heat), saltiness or salt and mineral 

poisonous quality caused a negative effect on crop 

plants at different plant growth, production, yield and 
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seed formation (Godard et al., 2007; Godard et al., 

2008; Yu et al., 2014). 

Biotechnology for biotic stress tolerance 

The damage caused to plants by different living 

organisms including, viruses, fungi, bacteria, 

nematodes, insects, and weeds caused biotic stress. 

Dissimilar to that of abiotic stress which showed up 

to caused critical and harmful impact because of 

environmental change. Different varieties of 

pesticides, fungicides and herbicides are often 

utilized to control crop losses which became the 

cause of damages in crop yield and production 

(Isman and Grieneisen, 2014; Law et al., 2017; Yoon 

et al., 2013). The use of the chemicals caused 

harmful effects on crop plants as well as the 

environmental quality through causing chemical 

pollution in environment and soil (Ahanger et al., 

2017; Mattah et al., 2015). Utilization of pesticides, 

fungicides and herbicides needs to get an essential 

analytics before applying on crop plants (Mabe et al., 

2017; Mahmood et al., 2014). Residues of sprayed 

pesticides, fungicides which are usually residing on 

the fruits or vegetables became the cause of an 

immediate harmful effect on health of human. Crop 

plant yields fluctuate alongside their degree for 

affectability towards a specific pesticide, herbicide 

and fungicide, the applications of these chemicals 

also caused problems in metabolic pathways of plant 

(Aktar et al., 2009; Kim et al., 2017).  

Insect-resistance inducible promoters 
In potatoes, pest attacks or abiotic stress conditions 

caused the potato protease inhibitor II (pinII) gene 

expression. The insect attack on transgenic 

Arabidopsis plant which was carrying GUS gene 

along with potato pinII promoter showed response in 

the form of expression against insect attack (Bu et al., 

2006; Liu et al., 1996). In most plants, the promoter 

of potato protease inhibitor II (pinII-2x) was induced 

and regarded as an ideal promoter of defense for gene 

expression (Bu et al., 2006). The expression of the 

promoters mannopine synthase (mas) (Godard, 2007; 

Li et al., 2013) and nopaline synthase (nos) promoter 

(An et al., 1990; Kim et al., 1993) was induced in 

leaf and stem tissues through injury and insect attack. 

Transgenic peanut (Arachis hypogaea L) from an 

inducible promoter PR1-a expressing transgene 

Cry1Ac confers enhanced resistance to the insect 

Spodoptera litura (Zhu-Salzman et al., 2004). Insect-

inducible PR1-a promoter is considered an 

appropriate promoter for the production of transgenic 

genes for aphid resistance, as the expression of the 

genes under this promoter was only induced during 

the aphid attack (War et al., 2012). Induced 

expression under wound and insect attack was shown 

by Tomato Lipoxygenase D (TomLoxD) promoter 

(Yan et al., 2013). Transgenic broccoli expressing 

insecticide with Cry1Ab showed resistance to insect 

Plutella xylostella (Linnaeus) under inducible 

promoter PR-1a (Cao et al., 2001). 

Nematode-inducible promoters 

The most important and crops universal plant 

parasitic nematodes have became the basis of 

important production losses. There have been still 

litter attempts to separate the inducible promoters of 

nematodes. Promotors Pdf2.1, Pdf2.2 and Pdf2.3 

showed induced expression in beet cyst nematode 

Heterodera schachtii infestation in on Arabidopsis 

(De Coninck et al., 2013; Siddique et al., 2011). The 

provoked outflow with root tie nematode 

meloidogyne incognita spoiling might have been 

indicated the GUS reporting gene combined with 

those nematode-responsive-root-specific promoter 

(AT1G26530) (Kumar et al., 2010). Creating RNAi-

based transgenics alongside demonstrative promoters 

against plant parasitic nematodes might be a chance 

to be a perfect gas method for combating parasitic 

nematodes to plants (Banerjee et al., 2017; Coyne et 

al., 2018).  

Pathogen-inducible promoters 

A critical problem caused damaging to crop plants 

around the world are microbial, bacterial and 

contagious pathogens. Different intricate pathways 

have shown that the plants usually transmit pathogen-

responsive proteins. On keep the contaminations of 

pathogens caused production of pathogen-responsive 

proteins, anti-viral and so forth to combat with the 

pathogenic attack. The safety for transgenic plants 

with pathogenic infections might have been expanded 

toward transgenic formation, pathogen-responsive 

proteins, antiviral genes and so on (Bebber et al., 

2013; Christou and Twyman, 2004). Phenylalanine 

ammonia-lyase promoter (PAL1) has been found 

produced under the spoiling effects for the bacterial 

pathogen Pseudomonas syringae (Godard et al., 

2007; Puthoff et al., 2010). A pathogen-responsive 

CMPG1 gene has also been identified to enhance 

tolerance against pathogenic attack.  

Diseases 

A large number of plant diseases perusing biotic 

stresses, including viruses, bacteria, fungi and 

nematodes caused losses of crop plant yield and 

production potential. Over 1978, a population of 

Geminiviruses might have been found in plants 

during different spans with single-stranded 

deoxyribonucleic acid (ssDNA) infections caused 

losses in crop plants (Moffat, 1999). The 

Geminiviridae has three genera, including 

Mastrevirus, Begomovirus and Curtovirus. The 

Begomovirus class has become the cause of loss of 

yield in cotton. 
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Cotton leaf curl disease 

The cotton leaf curl virus disease (CLCuD) is one of 

the serious diseases of cotton, which caused damage 

in cotton production. The indications are including 

thickening and yellowing about little veins on the 

down surface of leaf with shrinked margins. Margins 

twist descending alternately upward with hindered 

plant growth under disease attack because of 

decreased inter-nodal separation (Qazi et al., 2007; 

Zhou, 2013). Flowering, boll development, 

maturation, seed cotton generation and fiber quality 

are extremely effected (Amrao et al., 2010). CLCuD 

reveals to upward twisting (Fig. 1) alongside 

thickening of the cotton plant leaves, twisting 

alongside leaf thickening, enations on the underside 

of the leaves, and cotton plant hindering growth. 

Transgenic cotton expressing partial AC1 and βC1 

gene of CLCuV can be used as virus resistance 

source in cotton breeding programs aiming to 

improve yield and potential of cotton (Sattar et al., 

2013; Tahir et al., 2011). 

 

Fig 1. Curling upward along with the thickening of 

cotton plant leaves. 

Bacterial blight disease   

Bacterial blight disease caused tannic-grey with 

white lesions along the veins of leaves of plants. In 

the tillering stage (Fig. 1), the stricks expands with 

plant growth, peaking at up to the blooming stage of 

plant. The additional harming show fate of the 

disease is Kresek, wherein those abandons of the 

entire plant transform pale yellow and shrivel of the 

early tillering phase throughout the seedling, bringing 

about an incomplete or totally finish crop yield 

(Ronald et al., 1992; Yang et al., 2006). Same time in 

the least development stages, leaf bud occurs, in spite 

of the fact that when kresek proceeds, harmful effect 

became extensive, post-flowering infections bring 

next to no sway for grain yield. The Xa1 gene which 

has been identified and transform in rice confers a 

resistance to Japanese race 1 of Xanthomonas oryzae 

pv. oryzae, against causal pathogen of disease 

bacterial blight (BB). One of the BB-resistance 

genes, Xa1, confers a high level of specific resistance 

to race 1 strains of Xoo in Japan (Antony et al., 2010; 

Gnanamanickam et al., 1999). 

 
Figure 1. Symptoms in rice of bacterial leaf blight. 

Cassava common mosaic disease 

Leaves of CsCMD-affected cassava plants produce 

mosaic and chlorotic symptoms. There are dark and 

light green areas that are delimited by veins on some 

of the affected leaves. During relatively cool periods, 

the symptoms are most extreme and the disease is 

most affected by cassava grown in the semitropical 

areas of South America. The affected plants are often 

stunted in these relatively cool conditions and yield 

losses can be up to 60 per cent (Costa and Kitajima, 

1972). CMD2 has been combined with CMD1 

through genetic crossing to induce resistance against 

CsCMVD (Calvert and Thresh, 2002). 

Viruses 

In plants, the viruses that complete their life cycle are 

called plant viruses. Since all viruses are intracellular 

parasites, plant viruses often rely on plant cell 

machinery to complete their replication. 

Gemini viruses  

Geminiviruses in tropical and subtropical regions of 

the world are a group of small insects spread viruses 

as plant pathogenic viruses responsible for various 

crop diseases (Bilal et al., 2020; Moffat, 1999; 

Varma and Malathi, 2003). These viruses also 

contribute to epidemics, causing major crop losses. 

The recombination of various geminiviruses co-

infecting the same plant, the expansion of agriculture 

into new growing areas and the transfer of 

contaminated plant material to new locations are 

various factors contributing to crop epidemics 

(Varsani et al., 2014; Yu et al., 2010). 

Begomo viruses 

Begomoviruses is the most significant genus of 

Geminiviruses. Begomoviruses are the largest and 

most economically important genus to date, 

comprising more than 200 species, and their number 

is still growing (Moffat, 1999; Yu et al., 2010). 

Cotton leaf curl viruse 

The economically relevant monopartite Geminivirus 

is the cotton leaf curl virus, which is transmitted in 

persistent circulatory forms by whitefly. CLCuV 
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causes serious damage to Gossipium hirsutum in 

Pakistan, while G. arborecum is immune to a virus 

like this (Amrao et al., 2010; Calvert and Thresh, 

2002; Sattar et al., 2013). 

Genes to control biotic stress 

Plants usually have two safe support levels that guard 

them against various types and strains of pathogens. 

Pathogenic strike produces on the surface of the plant 

distinguished by plant pattern recognition receptor 

(PRR). Those PRR generates signs that initiate 

defense-related genes also exchange of the core. The 

secondary ROS emission and actuation of 

pathogenesis-related (PRs) caused unsafe debilitating 

pathogens perusing plant pheromones (Kumar et al., 

2010; Li et al., 2013). At the same time, inside the 

cell, pathogens frequently all the infuse sets of 

influencing particles that endeavor on mischief 

alternately thrashing the plant resistance system. The 

affecter particles harm the signaling and reaction 

from claiming transduction that disrupts the plant 

defense system (Fig. 3). Throughout stress conditions 

signal transmitted the abiotic stress sign required with 

control transmission factors (Bordenave et al., 2013; 

Singh and Singh, 2018). 

 
Figure 3. A graphical model of the relationship of 

plant-pathogen and molecular processes involved in 

tolerance and susceptibility to attacks by pathogens. 

PRR: receptor for pattern recognition, PRs: related to 

pathogenesis, ROS: reactive oxygen species. 

 Biotechnology for Abiotic Stress Tolerance 

Along with abiotic stresses, drought and high 

temperature are the 2 main stresses that harmfully 

affect the potential and production of crop plants. 

Such abiotic stresses decrease farm earnings and 

agricultural benefits. The reduction of water up to 

40% reasons the bringing down for maize yields up 

to 40% of yield while wheat with 21% of yield losses 

(Daryanto et al., 2016; Ronald et al., 1992). In 

Africa, agricultural crops, like cowpea, right now 

appearances dry season stress, decreasing yields from 

34% to 68% (Farooq et al., 2017a). Under abiotic 

stress the creation for reactive oxygen species (ROS) 

takes place which caused harmful effects on 

carbohydrates, nucleic acids, lipids and proteins. This 

oxidative stress adversely affects plant development 

(Zhu-Salzman et al., 2004). Further, water deficiency 

and heat stress could harm transpiration, stomata 

conductance and photosynthesis in crop plant 

(Varsani et al., 2014). 

Drought stress  

Adaptation with water stress states is a standout 

amongst the significant tests for plant researchers and 

biotechnologists in the present situation for fast 

environmental change. Researchers are expanding 

their deliberations to explain different atmosphere 

triggered metabolic forms during cell division as well 

as gene levels in plants (Farooq et al., 2017b; 

Lamaoui et al., 2018). There is need to develop 

patterns to move forward water use efficiency by 

plant cells (Chen et al., 2017; Sehgal et al., 2018) 

available water. The tolerance inducible genes which 

have also been isolated and identify by using 

microarray techniques (Ye et al., 2018) use to 

produce transgenic crop plants, the phytohormone 

like ABA which help to maintain the stomata 

conductance is due to a stress responsive genes 

(Banerjee et al., 2017; Christou and Twyman, 2004). 

In Arabidopsis 1354 genes have been identified 

which up and down-regulated accompanying ABA 

applications or treatments, the most coding indicator 

transduction in plants (Huot et al., 2014). Likewise, it 

has been accounted that over outflow from claiming 

capsicum annuum dry season stress responsive 6 

(CaDSR6) gene of Arabidopsis prompted elevated 

tolerance in dry season than for wild sort plants. 

Additionally indicated that those genes which are for 

stress-responsive to NaCl (SNAC1) controlled its 

signaling about suction phosphate synthesis kind 1-

phosphatidylinositol-3-phosphate-5-kinase, 2C 

protein phosphates and in addition ABA receptor 

clinched alongside wheat plants under dry season 

stress (Key et al., 2008; Liu et al., 1996). 

Tolerance for Cold stress 

Plants which can survival at very lower temperature 

conditions relies on their physiological, sub-

molecular reactions triggered by those plant ahead 

purposes of presentation on low temperature (John et 

al., 2016). These plants could survive under chilling 

temperature. Water availability, development, 

photorespiration, photoperiod are usually imperative 

factors that figure out the deacclimation and 

reacclimation for plants under chilling stress 

(Hossain et al., 2018; John et al., 2016). Perfect 

solutes, proteins, antioxidants and outflow for 
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chilling responsive genes have a significant role in 

chilling tolerance (John et al., 2016). Modified gene 

interpretation for specific proteins for chilly tolerance 

assume an important role in the survival of plants and 

increasing crop plant yield (Ban et al., 2017). Various 

genes have been isolated and identified to control 

chilling stress like TFs and CBF/DREB. Chilling 

stress caused harm on photosynthetic machinery, 

including photo-systems and photosynthetic 

pigments, adjusting the outflow for photosynthetic 

genes (Jan et al., 2018) in plants. The violaxanthinde-

epoxidasegene (LeVDE), directed for temperature 

rhythms. The over expression about gene expanded 

quenching non-photochemical, Fv/Fm and oxidizable 

P700, quantum yield, and action of xanthophyllcycle 

and mitigated PSI and PSII photoinhibition at low 

temperature stress (Thakur et al., 2020).  

Genes to Overcome abiotic Stress 

Plants developed various resistance methods 

throughout creation of composite signaling cascade 

in varying stress conditions (AbuQamar et al., 2009). 

Plant exposed to biotic and abiotic stresses, endorse 

to trigger kinase surge and specific ion channels 

remain turn on, or producing reactive oxygen species 

phytoharmones such as jasmonic acid, abscisic acid 

(Atkinson and Urwin, 2012). A basic model need 

been suggested over (Fig. 4), the place separate 

components about reactions on abiotic focuses on 

plants alongside their comparing would exhibited for 

finer understanding.  

 

Figure 4. Simple model of different signaling 

pathway involved in plants to overcome the abiotic 

stresses. ABA: abscisic acid, ROS: reactive oxygen 

species. 

Plant cell sensors or receptors placed in the cell 

divider alternately recognize stress conditions. 

Abiotic stress indicator transduction caused (i) ABA-

dependent (ii) ABA-independent pathways. In the 

ABA-dependent pathway, ABRE is the fundamental 

ABA responsive components that initiate the stress 

receptive genes. On the other hand, in the ABA-

independent pathway for dehydration responsive 

components may also be included which alongside 

drought, chilling also salt stress receptive genes 

parameter (Fig. 4). These signals are usually 

established by cell surface sensors that produced 

from plants. 

Abiotic and biotic tolerance 

CRISPR/Cas9 is a recently developed technology for 

genome editing and it has widely connected for 

perception mutation, gene modification, utilitarian 

gene analysis, Furthermore mix for remote genes to 

gene pyramiding, genes knockouts, protein 

conveyance on genomic, gene interpretation 

repression/activation, Furthermore epigenome 

altering to different organisms (Zhang et al., 2014). 

There are large numbers of reports on the utilization 

of this genome editing system in plant genome 

around ~ 20 crop species in crop plants have been 

edited genetically through CRISPR (Gao et al., 2017; 

Wu et al., 2014). A preview of CRISPR/Cas9-based 

gene edited plants now has biotic and abiotic stress 

tolerance.  

Conclusion 

Plants are frequently exposed with different biotic 

and abiotic stresses, which cause important disaster 

over crop yields around the world. Thus, it might 

make logical that understanding stress tolerance in 

crop plants now a day’s biotechnology enable those 

achievements for nourish and feed humanity through 

improving crop plant yield and potential under 

stressful environmental conditions. 
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