

GENETIC EVALUATION OF LEGUME SPECIES UNDER HEAVY METAL AND BIOGAS WASTEWATER TREATMENTS

*KAMRAN, ALI Q, MALIK A

Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore Pakistan Corresponding author email: <u>kamrankhan002121@gmail.com</u>

(Received, 5th July 2020, Revised 30th December 2020, Published 6th January 2021)

Abstract: The legumes are very important food crops, called pulses grown throughout the world for their grain which contains essential vitamins, carbohydrates, protein, fat, minerals, and dietary fiber. Chickpea (Cicer arietinum L.), pea (Pisum sativum L.), green mung bean (Vigna radiate L.), and black mung bean (Vigna mungo L.) is important pulse crops that belong to the family Fabaceae or Leguminosae. The present experiment was conducted at the greenhouse of Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore during the season of July to August of 2020 to study the effects of different treatments of $ZnSO_4$ and biogas wastewater on the growth of chickpea, pea, green bean, and black bean. The experiment consisted of two treatment combinations comprising of two levels of $ZnSO_4$ at 0.5M and 0.25M along with the two levels of biogas wastewater at 500ml and 250ml along with including the control group. It was observed from results that the performance of Chickpea, pea, green mung bean, and black mung bean genotypes were variable under heavy metal zinc sulfate treatment. The results suggested that the treatment of a higher concentration of $0.5M ZnSO_4$ was toxic as compared with 0.25MZnSO₄. The application of biogas wastewater was found relatively fit for the seedling growth of all of four pulse crop species. The results showed that there was a significant correlation among root length, shoot length, and leaf length under the application of different treatments. A higher genetic advance was reported for shoot length and root length which revealed that the selection of legumes may be fruitful to improve yield under stress conditions.

Keywords: chickpea, pea, green mung bean, black mung bean, stress, $ZnSO_4$

Introduction

Chickpea (Cicer arietinum L.), pea (Pisum sativum L.), green mung bean (Vigna radiate L.) and black mung bean (Vigna mungo L.) are an important pulse crops belong to family Fabaceae or Leguminosae. Chickpea has been cultivated in the Middle East while green bean and black bean have been cultivated in East Asia and Southeast Asia from ancient times of old civilizations. Chickpea and pea are sensitive to abiotic stress such as heat, drought, cold and heavy metals. The introduction and use of high input fertilizer varieties has caused micronutrient depletion in soils, mainly zinc (Zn). About 60 % of the world's soil is deemed insufficient for crops production of some essential nutrient elements due to mineral stress deficiency, lack of availability or toxicity (Pathak et al., 2012; Moller, 2009). The legumes are important to boost soil fertility and to increase crop productivity in developing countries' cultivation systems of arid and semi-arid areas. Furthermore, Bio fertilizers are products made of living microorganisms that can

increase crop production in an environmentally friendly, sustainable way, through a variety of direct and indirect mechanisms (Amjad, 2002). Chickpea constitutes a significant source of human dietary protein, particularly for a large vegetarian population. It produces an average of 126 kg of protein per hectare and is potentially the top protein producing vegetables alongside soybean. Peas have been cultivated for many centuries as a significant source of animal feed and human food Cousin, 1997). Field pea is a cool legume crop cultivated worldwide in the cool season. 20% of the available protein is provided by beans in many developing countries. Beans are also a key component of dietary protein in 50% of the world's population (Deshpande et al., 1984; Sai et al., 2017).

Stress is any external elements that affect physiology, development, productivity, metabolism and plant survival. Stress has been divided into two categories: abiotic and biotic (Mahajan et al., 2018). Abiotic stress is a stress mainly caused by environmental

changes such as drought, salinity, heat, colds, water recesses, extreme soil pH changes, mechanical stress (for example wind, hail, wounds, etc.) and effects of herbicides and weedicides and exposure to other heavy metals. Although, the biotic stress is often pathogenic stress which is caused by living organisms like bacteria, fungi, viruses, nematodes, etc., insects and weeds, which caused higher loss of crop productivity (Chen, 2006; Sangolli et al., 2018). Across different terrestrial habitats around the world, heavy metal toxicity has become a key concern. The damage to soil texture i.e. pH of soil, the presence of various elements, heavy metal causes a direct and indirect decrease in plant growth by adversely affecting diverse physiological and molecular activity of plants. Heavy metals, including Hg, Co, Cd, Fe, Ni, Al, Cr, Ar, Zn, Cu, Mo and Mn, etc., today extensively used in industries and imparts damage to soil as well as to crop productivity (Mahanty et al., 2017; Ranpariya et al., 2017; Zubair et al., 2016).

Materials and methods

Chickpea (Cicer arietinum L.), pea (Pisum sativum L.), green mung bean (Vigna radiate L.) and black mung bean (Vigna mungo L.) seeds were collected from local market of Lahore. The present experiment was conducted at the greenhouse of Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore during the season of July to August of 2020 to study the effects of different treatments of ZnSO4 and biogas wastewater on the growth of chickpea, pea, green bean and black bean. The experiment consisted of two treatment combinations comprising of two levels of ZnSO₄ at 0.5M and 0.25M along with the two levels of biogas wastewater at 500ml and 250ml along with including control group. Seeds were sown and after complete germination five plants from each pot of chickpea, pea, green mung bean and black mung bean were taken to collect data and after removing the plants from each pot, treatments of biogas wastewater and ZnSO₄ was applied. Five groups were made; the first group was given no treatment because it was kept as control group. The next four groups were included;

second group was treated with 0.5M ZnSO₄, third group with 0.25M ZnSO₄, fourth group with 500ml of biogas wastewater and fifth group was 250 ml of biogas wastewater. After a period of one week of first treatment, five plants were again removed from each pot to record data. After that second treatment was given to each pot and after period of one week again plants were removed to collect the data. The application of treatments and data recording was carried out five times. After collection of data, pooled analysis of variance, correlation and regression analysis was carried out for traits including root length, roots per plant, shoot length and leaf length.

Results and Discussions

It was persuaded from results given in table 1 that significant differences were among treatments, genotypes and genotypes × treatment. It was found that the average leaf length $(5.524\pm0.0035 \text{ cm})$, number of roots per plant (5.125±0.0044cm), root $(5.1045 \pm 0.0011 \text{ cm})$ length and shoot length (3.5±0.0023cm) were found under combined effects of all of the treatments. The genetic advance was found higher for all of the studied traits of legume species. The coefficient of variation was found lower for all of the studied traits which indicated that the results for root length, shoot length, leaf length and number of roots per plants were highly consistent and reliable for making selection under heavy metal stress conditions. The results from table 2 indicated that survival of legume genotypes was higher under control conditions as compared with $ZnSO_4$ and biogas wastewater treatment. The lowest survival of black mung bean was found under the treatment of 0.5M ZnSO₄ followed by 0.25 M ZnSO₄. The application of ZnSO₄ showed adverse effects on black mung bean only to reduce the survival. The lower survival percentage indicated that the genotype was sensitive to application of ZnSO₄. The genotypes which showed higher survival percentage under applications of ZnSO₄ and biogas wastewater indicated that the legume genotype may be used as heavy metal tolerance genotype (Akhtar et al., 2017; Bhardwaj et al., 2014; Garci-Gomez et al., 2017).

Table 1 Pooled analysis of variance						
Source	DF	LL	NRP	RL	SL	
Replication	1	3.23761	2.025	0.03721	0.121	
Genotypes	3	0.04902*	0.825*	0.32551*	0.15*	
Treatment	4	0.67771*	1*	0.14857*	0.00437*	

Genotypes × Treatment	12	0.84646*	1.53333*	0.28637*	0.10104*
Error	19	0.35954	0.28816	0.35686	0.03468
Grand Mean		5.524	5.125	5.1045	3.5
Standard error		0.0035	0.0044	0.0011	0.0023
Coefficient of variance		10.85	10.47	11.7	5.32
Genetic Advance		13.237	15.654	16.342	17.346

* = Significant at 5% probability level, LL = Leaf length, RL = Root length, SL = Shoot length, NPR = Number of roots per plant

Table 2 Survival percentage of seedlings under different treatments					
reatmants	Chieleneo	Dee	Green mung	Black	
eatments	Спіскреа	геа	hoon	mung hoo	

Treatmente	Chielense	Dee	or een mung	Diach	
1 reatments	Спіскреа	rea	bean	mung bean	
Control	94.94	97.14	94.94	92.50	
0.5 M ZnSO ₄	84.33	78.75	84.33	70.25	
0.25 M ZnSO ₄	89.59	80.13	84.61	72.67	
500 ml Biogas wastewater	89.82	92.86	89.82	92.50	
250 ml Biogas wastewater	89.41	87.14	89.41	85.34	

The results from table 3 for chickpea indicated that the higher number of roots per plant was found higher under control condition (9.10) while lowest was found under 250ml biogas wastewater. The shoot length was also found under control condition (18.19cm) while lowest for $0.5M \text{ ZnSO}_4$ (13.18cm). The higher leaf length was found under control conditions (5.26cm) while lowest for 0.5M ZnSO₄ (4.15cm) while root length was found higher under control condition (19.91cm) while lowest under 0.25M ZnSO₄ (16.88cm). The higher shoot length and root length under applications of ZnSO₄ indicated that the genotype has tolerance against heavy metals applications and selection may be helpful to improve chickpea yield under stressful environment (Akhtar et al., 2017; Bhardwaj et al., 2014; Garci-Gomez et al., 2017; Moller and Stinner 2010; Verma et al., 2017). The results from table 3

for pea indicated that the higher number of roots per plant was found higher under 250 ml Biogas wastewater condition (8.1) while lowest was found under 0.5M ZnSO₄ (6.2). The shoot length was also found under control condition (15.28cm) while lowest for 0.5M ZnSO₄ (11.22cm). The higher leaf length was found under 250 ml Biogas wastewater conditions (7.16cm) while lowest for 0.5M ZnSO₄ (6.17cm) while root length was found higher under 250 ml Biogas wastewater condition (17.91cm) while lowest under 0.5M ZnSO₄ (15.89cm). The higher shoot length and root length under applications of ZnSO₄ indicated that the genotype has tolerance against heavy metals applications and selection may be helpful to improve pea yield under stressful environment (Akhtar et al., 2017; Bhardwaj et al., 2014; Garci-Gomez et al., 2017; Usman et al., 2014).

Genotypes	Treatment	NRP	SL	LL	RL
Chickpea	Control	9.1a	18.19a	5.26a	19.91a
	0.5 M ZnSO ₄	7.3b	13.18d	4.15b	16.89c
	0.25 M ZnSO ₄	6.4c	14.23c	4.19b	16.88c
	500 ml Biogas wastewater	6.5c	13.27d	5.11a	18.87b
	250 ml Biogas wastewater	5.1d	15.20 b	5.19a	18.92b
Pea	Control	7.6b	15.28a	7.14a	16.87b
	0.5 M ZnSO ₄	6.2c	11.22d	6.17b	15.89c
	0.25 M ZnSO ₄	7.3b	12.26c	6.19b	16.78b
	500 ml Biogas wastewater	7.7b	14.19b	7.14a	16.78b
	250 ml Biogas wastewater	8.1a	14.25b	7.16a	17.91a
Green mung bean	Control	8.3a	17.24a	8.19a	15.86 b
	0.5 M ZnSO ₄	7.2b	13.23c	6.18c	14.87 c

	0.25 M ZnSO ₄	6.3c	14.27b	6.17c	13.88d
	500 ml Biogas wastewater	8.1a	13.21c	7.19b	16.89a
	250 ml Biogas wastewater	8.4a	12.26d	7.13b	16.79a
Black mung bean	Control	8.5a	16.29a	8.14a	17.91a
	0.5 M ZnSO ₄	5.9c	13.21d	6.17c	15.85c
	0.25 M ZnSO ₄	5.8c	12.24e	6.12c	14.87d
	500 ml Biogas wastewater	7.1b	15.19b	7.18b	16.84 b
	250 ml Biogas wastewater	7.4b	14.27c	7.16b	17.82a
					-

LL = Leaf length, RL = Root length, SL = Shoot length, NPR = Number of roots per plant

The results from table 3 for green mung bean indicated that the higher number of roots per plant was found higher under 250 ml Biogas wastewater condition (8.4) while lowest was found under 0.25M $ZnSO_4$ (6.3). The root length was also found under 250 ml Biogas wastewater condition (16.79cm) while lowest for 0.25M ZnSO₄ (13.88cm). The higher shoot length was found under control conditions (17.24cm) while lowest for 250 ml Biogas wastewater (12.26cm) while leaf length was found higher under control condition (8.19cm) while lowest under 0.25M $ZnSO_4$ (6.17cm). The higher shoot length and root length under applications of ZnSO₄ indicated that the genotype has tolerance against heavy metals applications and selection may be helpful to improve green mung bean yield under stressful environment. The results from table 3 for black mung bean indicated that the higher number of roots per plant was found higher under control condition (8.5) while lowest was found under $0.25M ZnSO_4$ (5.8). The root length was also found under 250 ml Biogas wastewater condition (17.82cm) and control

conditions (17.91cm) while lowest for $0.25M \text{ ZnSO}_4$ (14.87cm). The higher shoot length was found under control conditions (16.29cm) while lowest for 0.25M ZnSO₄ (12.24cm) while leaf length was found higher under control condition (8.14cm) while lowest under $0.25M \text{ ZnSO}_4$ (6.12cm). The higher shoot length and root length under applications of ZnSO₄ indicated that the genotype has tolerance against heavy metals applications and selection may be helpful to improve black mung bean yield under stressful environment (Ali et al., 2012; Akhtar *et al.*, 2017; Bhardwaj *et al.*, 2014; Garci-Gomez et al., 2017; Hussain *et al.*, 2015; Usman *et al.*, 2014).

The results from table 4 about pooled correlation analysis of studied traits of legume crop species indicated that there was significant and positive correlation among all of the studied traits viz. root length, shoot length, number of roots per plant and leaf length. The significant correlation indicated that the selection may be helpful to improve legume seed yield under various stress conditions (Ali and Ahsan 2012; Ali *et al.*, 2010ab; Ali *et al.*, 2013; Ali *et al.*, 2014; Ali *et al.*, 216).

Source	LL	NRP	RL
NRP	0.4627*		
RL	0.3832*	0.6312*	
SL	0.4972*	0.5823*	0.6759*

Table 4. Pooled correlation among	g mor	phological	traits of legur	nes under (different	treatments
		F				

* = Significant at 5% probability level, LL = Leaf length, RL = Root length, SL = Shoot length, NPR = Number of roots per plant

Conflict of interest

The authors declared absence of any type of conflict

of interest.

References

Akhtar, M. F. u. Z., Jamil, M., Ahamd, M., & Abbasi,G. H. (2017). Evaluation of biofertilizer in combination with organic amendments and rock phosphate enriched compost for

improving productivity of chickpea and maize. *Soil and Environment*, **36**(1), 59–69.

Ali, Q., Ahsan, M., Ali, F., Aslam, M., Khan, N.H., Munzoor, M., Mustafa, H.S.B. and Muhammad, S., (2013). Heritability, heterosis and heterobeltiosis studies for morphological traits of maize (Zea mays L.) seedlings. Advancements in Life sciences, 1(1): 53-62.

- Ali, Q., Ali, A., Ahsan, M., Nasir, I.A., Abbas, H.G. and Ashraf, M.A., (2014). Line× Tester analysis for morpho-physiological traits of Zea mays L seedlings. *Advancements in Life sciences*, 1(4): 242-253.
- Ali, Q., Ahsan, M., Kanwal, N., Ali, F., Ali, A., Ahmed, W., Ishfaq, M. and Saleem, M., (2016). Screening for drought tolerance: comparison of maize hybrids under water deficit condition. *Advancements in Life Sciences*, 3(2), pp.51-58.
- Ali, Q., Ahsan, M. and Saleem, M., (2010). Genetic variability and trait association in chickpea (Cicer arietinum L.). *Electronic Journal of Plant Breeding*, 1(3): 328-333.
- Ali, Q., Muhammad, A. and Farooq, J., (2010). Genetic variability and trait association in chickpea (Cicer arietinum L.) genotypes at seedling stage. *Electronic Journal of Plant Breeding*, 1(3): 334-341.
- Ali, Q., Ahsan, M., Khaliq, I., Elahi, M., Shahbaz, M., Ahmed, W. and Naees, M., (2011). Estimation of genetic association of yield and quality traits in chickpea (*Cicer arietinum* L.). *International Research Journal of Plant Sciences*, 2(6): 166-169.
- Ali, Q., Ahsan, M., Khan, N.H., Ali, F., Elahi, M. and Elahi, F., (2012). Genetic analysis for various quantitative traits of chickpea (Cicer arietinum L.). *International Journal for Agro Veterinary* and Medical Sciences, 6(1): 51-57.
- Ali, Q. and Ahsan, M., (2012). Estimation of genetic variability and correlation analysis for quantitative traits in chickpea (Cicer arietinum L.). *International Journal for Agro Veterinary and Medical Sciences*, 6(4), pp.241-249.
- Amjad, M., (2002). Performance of nine pea cultivars under Faisalabad conditions. 39, 16–19.
- Bhardwaj, D., Ansari, M. W., Sahoo, R. K., & Tuteja, N. (2014). Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. *Microbial Cell Factories*, **13**(1), 1–10.
- Chen, J.-H. (2006). The combined use of chemical and organic fertilizers and/or biofertilizer for crop growth and soil fertility Jen-Hshuan Chen? Department of Soil and Environmental Sciences, National Chung Hsing University,

Taiwan, R.O.C. International Workshop on Sustained Management, October, 1–11.

- Cousin, R. (1997). Peas (Pisum sativum L.). *Field Crops Research*, **53**(1–3), 111–130.
- Deshpande, S. S., Sathe, S. K., & Salunkhe, D. K. (1984). Interrelationships between certain physical and chemical properties of dry bean (Phaseolus vulgaris L.). *Qualitas Plantarum Plant Foods for Human Nutrition*, 34(1), 53–65.
- García-Gómez, C., Obrador, A., González, D., Babín, M., & Fernández, M. D. (2017). Comparative effect of ZnO NPs, ZnO bulk and ZnSO4 in the antioxidant defences of two plant species growing in two agricultural soils under greenhouse conditions. *Science of the Total Environment*, **589**, 11–24.
- Hussain, N., Aslam, M., Ghaffar, A., & Irshad, M. (2015). Chickpea genotypes evaluation for morpho-yield traits under water stress conditions. *JAPS: Journal of Animal & Plant Sciences* 25(1), 206–211.
- Mahajan, R., Dar, A. A., Mukthar, S., & Zargar, S.
 M. (2018). Pisum Improvement Against Biotic Stress: Current Status and Future Prospects. In *Pulse Improvement* (pp. 109-136). Springer, Cham.
- Mahanty, T., Bhattacharjee, S., Goswami, M., Bhattacharyya, P., Das, B., Ghosh, A., & Tribedi, P. (2017). Biofertilizers: a potential approach for sustainable agriculture development. *Environmental Science and Pollution Research*, **24**(4), 3315–3335.
- Möller, K. (2009). Influence of different manuring systems with and without biogas digestion on soil organic matter and nitrogen inputs, flows and budgets in organic cropping systems. *Nutrient Cycling in Agroecosystems*, 84(2), 179–202.
- Möller, K., & Stinner, W. (2010). Effects of organic wastes digestion for biogas production on mineral nutrient availability of biogas effluents. *Nutrient Cycling in Agroecosystems*, 87(3), 395–413.
- Pathak, G. C., Gupta, B., & Pandey, N. (2012). Improving reproductive efficiency of chickpea by foliar application of zinc. *Brazilian Journal* of *Plant Physiology*, 24(3), 173–180.

- Ranpariya, V. S., Polara, K. B., Hirpara, D. V, & Bodar, K. H. (2017). Effect of potassium, zinc and FYM on content and uptake of nutrients in seed of summer green gram (Vigna radiata L.) and post harvest soil fertility under medium black calcareous soil. *International Journal of Chemical Studies*, 5(5), 1055–1058.
- Sai, K., Rama, S., & George, P. J. (2017). Effect of levels of phosphorus and zinc on growth and yield of Kabuli chickpea (*Cicer kabulium* L .). 6(4), 1013–1016.
- Sangolli, V. O., Nawalagatti, C. M., Uppar, D. S., & Koti, R. V. (2018). Effect of zinc nutrition on morphological characters in chickpea. 7(2), 902–904.
- Serdjuk, M., Bodmer, U., & Hülsbergen, K. J. (2018). Integration of biogas production into organic arable farming systems: crop yield

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licen ses/by/4.0/. © The Author(s) 2021

response and economic effects. Organic Agriculture, **8**(4), 301–314.

- Usman, M., Tahir, M. and Majeed, M.A., 2014. Effect of zinc sulphate as soil application and seed treatment on green gram (Vigna radiata L.). *Pakistan Journal of Life and Social Sciences*, **12**(2), pp.87-91.
- Verma, P. D., Swaroop, N., Upadhyay, Y., Swamy, A., & Dhruw, S. S. (2017). Role of Phosphorus, Zinc and Rhizobium on Physico-Chemical Properties of Soil in Field Pea (Pisum sativum L.) cv. Rachna. International *Journal of Current Microbiology and Applied Sciences*, 6(7), 4423–4428.
- Zubair, M., Shakir, M., Ali, Q., Rani, N., Fatima, N., Farooq, S., Shafiq, S., Kanwal, N., Ali, F. and Nasir, I.A. (2016). Rhizobacteria and phytoremediation of heavy metals. *Environmental Technology Reviews*, **5**(1): 112-119.