

EVALUATION OF MAIZE SEEDLING TRAITS UNDER SALT STRESS

NASEEM S, *ALI Q, MALIK A

Institute of Molecular Biology and Biotechnology, The university of Lahore, Lahore, Pakistan Corresponding author: <u>saim1692@gamil.com</u>

(Received, 4th March 2020, Revised 5th September 2020, Published 16nd September 2020)

Abstract: Maize is an important cereal crop lies at third after wheat and rice in Pakistan. It is very sensitive to salt, heat, drought, cold and heavy metal stresses. To evaluate the effects of salt (NaCl) on maize plant we have conducted a research experiment in the Green House of Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore. We select hybrid P1429, P5971 and P6103 of Maize to access the effect of different concentrations of NaCl stress included control, 0.25Molar NaCl, 0.5Molar NaCl, 0.75Molar NaCl, and 1Molar NaCl applications. The pots were filled with pure sand and seeds of each hybrid were sown in each pot and were let to germinate. After 7 days of germination the data was collected for leaf length, root length, shoot length and root/shoot length ratio. The pots were then given the treatment and data of above mentioned traits was recorded, the application of treatments and data recording were repeated 4 times. The data recorded (4 times each after one week) was subjected to pooled analysis of variance to find significant differences among hybrids and treatments. The result of our study showed that there were significant correlation among root length, shoot length and leaf length of seedlings, from average performance of hybrid P6103 was better as compared with other two hybrids under higher salt stress conditions. It was suggested from our study that the hybrid P6103 may be used as salt tolerance hybrids for improving grain and fodder yield of maize under salt stress condition.

Keywords: maize, salt stress, NaCl, root length, shoot length

Introduction

Maize (Corn) belongs to the grass family and has been grown throughout the world. It is an important cereal crop after wheat and rice. Among them the maize crop has more ability in term of production per hectare. The increase in yield requires a continuous increase in supply for improved and enhanced germplasm for improving the fodder and grain yield and productivity of corn plant. The growing area of corn has been decreasing through every year while very low expectation of increasing area and production in coming future (Ali et al., 2013; Ashraf et al., 2020). Therefore, there is an urgent requirement or need for vertical or continuous increase for fodder and grain yield/hectare for insuring the household and livestock food and fee security throughout the world (Boomsma et al., 2009; Cakir, 2004). However, the global warming changing, with a result for climatic change, causing a negative effect on corn crop grain yield and productivity which is increasing the food shortage and insecurity, although it has been noted that the current climatic effects caused a change in the relation for maize has become inconclusive along with the model dependent in corn growth, development, grain productivity and yield (Ali et al., 2011; Buckler et al., 2009; Edreira and Otegui, 2012). It has been found form various research works on climatic changing effects that the increase in temperature and rainfall are interlinked with each other, the increase in the temperature is also causing drought along with salt stress in the temperate, subtropical and tropical regions of world, there is an average increase in temperature up to 3-4°C till end of 21th century throughout the world and South East Asia continent (Buckler et al., 2009; Mupangwa et al., 2007; Mustafa et al., 2013; Saif-ul-malook et al., 2014).

Materials and Methods

The seeds of hybrid P1429, P5971 and P6103 were sown in pots. The base of the pots were covered with soil and the rest was filled with sand in each plastic pot about 8 to 10 seeds were sown in the sand at the depth of 3cm. the pots with both given conditions were irrigated with tap water initially. Treatment was given with different levels of NaCl (0.25Molar, 0.5Molar, 0.75Molar, 1Molar) and control. Data collection: the sampling of the plants was done at the time of harvesting. After every 7 days of treatment, 2 plants from each pot were randomly harvested carefully and various factors such as leaf length, root length, shoot length and root/shoot length ratio were

recorded. The data was analyzed for analysis of variance by using SPSS 23.1 version.

Result and discussions

Leaf length

The result we obtain from our finding and calculation showed that there was a significant difference between the treatments of different concentration of NaCl stress (Table 1). The coefficient of variance was lower which indicated that the results were reliable and accurate which may be used for further analysis and may be used to select genotypes to improve yield and increase their resistance against the stress. The average length of leaf was recorded as 10.8867±0.5505cm under different treatments. The average performance of all three hybrids was higher

for control $(13.6333\pm0.69602cm)$ followed by 1Molar NaCl (12.00±0.57735cm). The results from table 2 showed that the performance of hybrid P6103 was higher for treatments of NaCl with higher concentrations 0.5Molar NaCl, 0.75Molar NaCl and 1Molar NaCl as compared with other hybrids which showed better performance on lower concentrations of salt stress. The average leaf increase it indicated that the growth of leaf is good under the different concentrations of NaCl treatments and it show that show tolerance against the different they concentrations of stress and promote growth and yield of plant (Ali et al., 2016; Ali et al., 2014; Chai et al., 2016; Edreira and Otegui, 2012).

Table 1 Maan		and the second sec	den different selt s	
Table 1. Mean	periormance of maize	e genotypes for leaf length	under amerent satt c	concentrations

Treatments	Mean	Std. Deviation	Std. Error	95% Confidence Interval for Mean		Minimum	Maximum
		Deviation	LIIUI	Lower limit	Upper limit		
Control	13.6333	1.20554	0.69602	10.6386	16.6281	12.50	14.90
0.25 Molar NaCl	8.0000	1.32288	0.76376	4.7138	11.2862	6.50	9.00
0.5 Molar NaCl	10.7333	1.12398	0.64893	7.9412	13.5255	9.50	11.70
0.75 Molar NaCl	10.0667	0.40415	0.23333	9.0627	11.0706	9.70	10.50
1Molar NaCl	12.0000	1.00000	0.57735	9.5159	14.4841	11.00	13.00
Grand Mean	10.8867		0.5505				
Coefficient of	9.67						
variation							

Treatments	P1429	P5971	P6103	
Control	8.0000			
0.25 Molar NaCl	10.0667	10.0667		
0.5 Molar NaCl	10.7333	10.7333	10.7333	
0.75 Molar NaCl		12.0000	12.0000	
1Molar NaCl			13.6333	
Sig. p<0.05	0.110	0.353	0.085	

Shoot length

The results have shown that there was significant difference between the treatments of different concentration of NaCl stress (Table 2). The coefficient of variance was lower it means the result were reliable and accurate which indicated that we used it in further analysis for selection of maize genotypes for yield and enhanced tolerance against salt stress. The average length of shoot was recorded as 10.4800 ± 0.77393 cm under different treatments. The average performance of all three hybrids was higher for control (12.00 ± 0.57735 cm) followed by 1Molar NaCl (14.6667 ± 1.20185 cm). The results

from table 2a showed that the performance of hybrid P6103 was higher for treatments of NaCl with higher concentrations 0.5Molar NaCl and 0.75Molar NaCl as compared with other hybrids which showed better performance on lower concentrations of salt stress. The average shoot increase it indicated that the growth of leaf is good under the different concentrations of NaCl treatments and it show that show tolerance against the they different concentrations of stress and promote growth and yield of plant (Ali et al., 2015; Ali et al., 2012; de Azevedo Neto et al., 2006; Farre and Faci, 2006; Kanwal et al., 2019).

Table 2. Mean performance of maize genotypes for shoot length under different salt concentrations								
Treatments	Mean	Std.	Std.	95% Confidence Interval Minimum Maxir			Maximum	
		Deviation	Error	or for Mean				
				Lower limit	Upper limit			
Control	12.0000	1.00000	0.57735	9.5159	14.4841	11.00	13.00	
0.25 Molar NaCl	6.8333	1.25831	0.72648	3.7075	9.9591	5.50	8.00	
0.5 Molar NaCl	8.5000	.50000	0.28868	7.2579	9.7421	8.00	9.00	

0.75 Molar Na	Cl 10.4000	.36056	0.20817	9.5043	11.2957	10.00	10.70
1Molar NaCl	14.6667	2.08167	1.20185	9.4955	19.8378	13.00	17.00
Grand Mean	10.480	2.00107	0.77393	2.1255	17.0570	15.00	17.00
Coefficient of			0.77575				
variation	10.246						
	Table 2a	. Means for	group in ho	mogeneous sub	sets for shoot	length	
Tr	eatments	P1429		P5971		103	
	ntrol	5.3000					
0.2	25 Molar NaCl	6.5000		6.5000			
0.5	Molar NaCl			7.5000	7.5	000	
	5 Molar NaCl				8.1	667	
	Iolar NaCl						
	g. p<0.05	0.197		0.340	0.6		
Root length						ar NaCl and 1M	
	owed significant					nybrids which sh	
	of different co					concentrations o	
	rage length of r					increase it indic	
	62821cm) under					good under th	
	e average perfo					treatments and	
	gher for control			2	low tolerand	U	
	0.75Molar NaCl					ss and promote	
	laCl (10.40±0.6					al., 2016; Abbas	
	showed that the p					l et al., 2015; Ka	rahara et al.
	her for treatment				eng et al., 2008		
Table 3. Treatments	Mean performa Mean	std.	e genotypes Std.	95% Confide		ent salt concentr Minimum	ations Maximur
1 reatments	Witchi	Deviation	Error	for Mean	nee meer var	1viiiiiiuiii	1 viu xiiiiui
				Lower limit	Upper limit		
Control	9.8000	0.40000	0.23094	8.8063	10.7937	9.40	10.20
0.25 Molar Na(Cl 6.0000	0.30000	0.17321	5.2548	6.7452	5.70	6.30
		0 = 10 10	0.32830	10.7541	13.5792	11.70	
0.5 Molar NaC		0.56862	0.52050	10.7341		11.70	12.80
	1 12.1667	0.56862 0.79373	0.45826	10.4283	14.3717	11.50	12.80 13.00
0.75 Molar Na(1Molar NaCl	l 12.1667 Cl 12.4000 10.4000		$0.45826 \\ 0.37859$				
0.5 Molar NaCl 0.75 Molar NaC 1Molar NaCl Grand Mean	l 12.1667 Cl 12.4000	0.79373	0.45826	10.4283	14.3717	11.50	13.00
0.75 Molar Na(1Molar NaCl Grand Mean Coefficient of	l 12.1667 Cl 12.4000 10.4000 10.1533	0.79373	$0.45826 \\ 0.37859$	10.4283	14.3717	11.50	13.00
0.75 Molar Na(1Molar NaCl Grand Mean Coefficient of	l 12.1667 Cl 12.4000 10.4000 10.1533 9.973	0.79373 0.65574	0.45826 0.37859 0.62821	10.4283 8.7710	14.3717 12.0290	11.50 9.70	13.00
0.75 Molar NaC 1Molar NaCl Grand Mean Coefficient of variation	l 12.1667 Cl 12.4000 10.4000 10.1533 9.973 Table 3a	0.79373 0.65574 a. Means for	0.45826 0.37859 0.62821	10.4283 8.7710 omogeneous su	14.3717 12.0290 bsets for root	11.50 9.70 length	13.00
0.75 Molar Na 1Molar NaCl Grand Mean Coefficient of variation <u>Tre</u>	l 12.1667 Cl 12.4000 10.4000 10.1533 9.973 Table 3a eatments	0.79373 0.65574 a. Means for P1429	0.45826 0.37859 0.62821	10.4283 8.7710	14.3717 12.0290 bsets for root	11.50 9.70	13.00
0.75 Molar NaC 1Molar NaCl Grand Mean Coefficient of <u>variation</u> <u>Tre</u> Co	l 12.1667 Cl 12.4000 10.4000 10.1533 9.973 Table 3a eatments ntrol	0.79373 0.65574 a. Means for	0.45826 0.37859 0.62821	10.4283 8.7710 pmogeneous su P5971	14.3717 12.0290 bsets for root	11.50 9.70 length	13.00
0.75 Molar NaC 1Molar NaCl Grand Mean Coefficient of variation Tro Co 0.2	l 12.1667 Cl 12.4000 10.4000 10.1533 9.973 Table 3a eatments ntrol 25 Molar NaCl	0.79373 0.65574 a. Means for P1429	0.45826 0.37859 0.62821	10.4283 8.7710 pmogeneous su P5971 9.8000	14.3717 12.0290 bsets for root	11.50 9.70 length	13.00
0.75 Molar Na 1Molar Na Grand Mean Coefficient of variation Tr Co 0.2 0.5	l 12.1667 Cl 12.4000 10.4000 10.1533 9.973 Table 3a eatments ontrol 25 Molar NaCl 5 Molar NaCl	0.79373 0.65574 a. Means for P1429	0.45826 0.37859 0.62821	10.4283 8.7710 pmogeneous su P5971	14.3717 12.0290 bsets for root P6	11.50 9.70 length 103	13.00
0.75 Molar NaC 1Molar NaCl Grand Mean Coefficient of variation Tr. Co 0.2 0.5 0.7	l 12.1667 Cl 12.4000 10.4000 10.1533 9.973 Table 3a eatments ontrol 25 Molar NaCl 25 Molar NaCl 25 Molar NaCl	0.79373 0.65574 a. Means for P1429	0.45826 0.37859 0.62821	10.4283 8.7710 pmogeneous su P5971 9.8000	14.3717 12.0290 bsets for root P6.	11.50 9.70 length 103	13.00
0.75 Molar NaC 1Molar NaCl Grand Mean Coefficient of variation <u>Tr</u> Co 0.2 0.5 0.7 1M	l 12.1667 Cl 12.4000 10.4000 10.1533 9.973 Table 3a eatments ontrol 5 Molar NaCl 5 Molar NaCl 5 Molar NaCl 5 Molar NaCl 5 Molar NaCl	0.79373 0.65574 a. Means for P1429 6.0000	0.45826 0.37859 0.62821	10.4283 8.7710 mogeneous su P5971 9.8000 10.4000	14.3717 12.0290 bsets for root P6 12. 12.	11.50 9.70 length 103 1667 4000	13.00
0.75 Molar NaC 1Molar NaCl Grand Mean Coefficient of variation <u>Tre</u> Co 0.2 0.5 0.7 1M Sig	l 12.1667 Cl 12.4000 10.4000 10.1533 9.973 Table 3a eatments ontrol 5 Molar NaCl 5 Molar NaCl 5 Molar NaCl 5 Molar NaCl 5 Molar NaCl Jolar NaCl 5 Jolar SaCl 5 Jo	0.79373 0.65574 a. Means for P1429	0.45826 0.37859 0.62821	10.4283 8.7710 mogeneous su P5971 9.8000 10.4000 0.795	14.3717 12.0290 bsets for root P6 12. 12. 0.9	11.50 9.70 length 103 1667 4000 92	13.00 11.00
0.75 Molar NaCl IMolar NaCl Grand Mean Coefficient of variation <u>Try</u> Co 0.2 0.5 0.7 1M Sig Root/shoot len	l 12.1667 Cl 12.4000 10.4000 10.1533 9.973 Table 3a eatments introl 5 Molar NaCl 5 Molar NaCl 5 Molar NaCl 5 Molar NaCl Iolar NaCl g. p<0.05 ogth ratio	0.79373 0.65574 a. Means for P1429 6.0000 1.000	0.45826 0.37859 0.62821 group in he	10.4283 8.7710 0mogeneous su P5971 9.8000 10.4000 0.795 the growt	14.3717 12.0290 bsets for root P6 12. 12. 12. 0.9 th of leaf, roo	11.50 9.70 length 103 1667 4000 92 ts and shoot was	13.00 11.00
0.75 Molar NaCl IMolar NaCl Grand Mean Coefficient of variation	l 12.1667 Cl 12.4000 10.4000 10.1533 9.973 Table 3a eatments ntrol 5 Molar NaCl 5 Molar NaCl 5 Molar NaCl 6 Molar NaCl Jolar NaCl g. p<0.05 10 Job 10	0.79373 0.65574 a. Means for P1429 6.0000 1.000	0.45826 0.37859 0.62821 group in he	10.4283 8.7710 mogeneous su P5971 9.8000 10.4000 0.795 the growt the different	14.3717 12.0290 bsets for root P6 12. 12. 12. 0.9 th of leaf, roo ent concentrati	11.50 9.70 length 103 1667 4000 92 ts and shoot was ons of NaCl treat	13.00 11.00
0.75 Molar NaCl IMolar NaCl Grand Mean Coefficient of variation Tro Co 0.2 0.5 0.7 1M Sig Root/shoot len The result show treatments of co	1 12.1667 Cl 12.4000 10.4000 10.1533 9.973 Table 3a Table 3a eatments mtrol 5 Molar NaCl 5 Molar NaCl 5 Molar NaCl 5 Molar NaCl 6 Molar NaCl 5 Molar NaCl 7 Molar NaCl 5 Molar NaCl 9.975 5 Molar Nac	0.79373 0.65574 a. Means for P1429 6.0000 1.000 ifferences bet tration of Na	0.45826 0.37859 0.62821 group in he group in he Cl stress	10.4283 8.7710 mogeneous su P5971 9.8000 10.4000 0.795 the growt the differ showed to	14.3717 12.0290 bsets for root P6 12. 12. 12. 0.9 th of leaf, roo ent concentratio blerance again	11.50 9.70 length 103 1667 4000 92 ts and shoot was ons of NaCl treat st the different co	13.00 11.00
0.75 Molar NaCl Molar NaCl Grand Mean Coefficient of variation Tr Co 0.2 0.5 0.7 1M Sig Root/shoot len The result show treatments of C (Table 4). The	l 12.1667 Cl 12.4000 10.4000 10.1533 9.973 Table 3a eatments ntrol 5 Molar NaCl 5 Molar NaCl 5 Molar NaCl 6 Molar NaCl Jolar NaCl g. p<0.05 10 Job 10	0.79373 0.65574 a. Means for P1429 6.0000 1.000 ifferences bet tration of Na variance is	0.45826 0.37859 0.62821 group in he group in he Cl stress lower it	10.4283 8.7710 Demogeneous su P5971 9.8000 10.4000 0.795 the growthe different showed to of stress	14.3717 12.0290 bsets for root P6 12. 12. 12. 0.9 th of leaf, roo ent concentratio blerance again and promote	11.50 9.70 length 103 1667 4000 92 ts and shoot was ons of NaCl treat	13.00 11.00

(Table 4). The coefficient of variance is lower it means the result is reliable and accurate it indicate that we used it in future to improve their yield and increase their resistance against the stress. The average dry shoot weight was recorded that (0.6273 \pm 0.06500) under different treatments. The average root/shoot length ratio increased which indicated that

the different concentrations of NaCl treatments which showed tolerance against the different concentrations of stress and promote growth and yield of maize plant. The average performance of hybrid P6103 was better under the treatments of .25Molar NaCl, 0.5Molar NaCl and 1Molar NaCl concentration as compared with other maize hybrids. The different comparison of maize hybrids show that the root/shoot length ratio of seedlings was lower under 0.25Molar

NaCl is (0.2800) followed by 0.5Molar NaCl
(0.4567), control (0.7000). 0.75M NaCl (0.8000)
while highest under 1Molar NaCl (0.9000)
concentration. The result indicated that the effect of
various salt concentrations affected the plants but if

the stress concentration is lower than the growth of leaves is higher it means the concentrations effect the growth but improving some traits it can provide more tolerance in future (Mazhar et al., 2020; Shu and Liu, 2001; Tahir et al., 2020; Zubair et al., 2016).

Table 4. Mean performance of maize genotypes for root/shoot length ratio under different salt concentrations
--

Treatments	Mean	Std.	Std.	95% Confide	nce Interval	Minimum	Maximum
		Deviation	Error	for Mean			
				Lower limit	Upper limit		
Control	0.7000	0.10000	0.05774	0.4516	0.9484	0.60	0.80
0.25 Molar NaCl	0.2800	0.07211	0.04163	0.1009	0.4591	0.20	0.34
0.5 Molar NaCl	0.4567	0.14012	0.08090	0.1086	0.8047	0.30	0.57
0.75 Molar NaCl	0.8000	0.10000	0.05774	0.5516	1.0484	0.70	0.90
1Molar NaCl	0.9000	0.10000	0.05774	0.6516	1.1484	0.80	1.00
Grand Mean	0.6273		0.06500				
Coefficient of variation	10.103						

Table 4a. Means for group in homogeneous subsets for root/shoot length ratio							
Treatments	P1429	P5971	P6103				
Control	0.2800						
0.25 Molar NaCl	0.4567	0.4567					
0.5 Molar NaCl		0.7000	0.7000				
0.75 Molar NaCl			0.8000				
1Molar NaCl			0.9000				
Sig. p<0.05	0.422	0.167	0.312				

The results from table 5 indicated that there was positive and significant correlation among all of the studied traits. Root length and shoot length showed strong and significant correlation which indicated

that the selection of maize genotypes for salt stress tolerance may be helpful to improve grain and fodder yield of maize under slat stress conditions.

Table 4. Pooled correlation among different traits of maize under drought stress conditions

Traits	Shoot length	Root length	Leaf length
Root length	0.8019*		
Leaf length	0.6701*	0.2307	
Root/shoot length	0.4503*	-0.2250	0.4914*
ratio			

* = Significant at 5% probability level

Conflict of interest

The authors declared absence of any type of conflict of interest in manuscript publication

References

- Aaliya, K., Qamar, Z., Ahmad, N. I., Ali, Q., Munim, F. A., and Husnain, T. (2016). Transformation, evaluation of gtgene and multivariate genetic analysis for morphophysiological and yield attributing traits in Zea mays. *Genetika* 48, 423-433.
- Abbas, H. G., Mahmood, A., and Ali, Q. (2016). Zero tillage: a potential technology to improve cotton yield. *Genetika* **48**, 761-776.
- Ali, F., Ahsan, M., Ali, Q., and Kanwal, N. (2017). Phenotypic stability of Zea mays grain yield and its attributing traits under drought stress. *Frontiers in plant science* 8, 1397.

- Ali, F., Kanwal, N., Ahsan, M., Ali, Q., Bibi, I., and Niazi, N. K. (2015). Multivariate analysis of grain yield and its attributing traits in different maize hybrids grown under heat and drought stress. *Scientifica* 2015.
- Ali, Q., Ahsan, M., Ali, F., Aslam, M., Khan, N. H., Munzoor, M., Mustafa, H. S. B., and Muhammad, S. (2013). Heritability, heterosis and heterobeltiosis studies for morphological traits of maize (Zea mays L.) seedlings. Advancements in Life sciences 1.
- Ali, Q., Ahsan, M., Kanwal, N., Ali, F., Ali, A., Ahmed, W., Ishfaq, M., and Saleem, M. (2016). Screening for drought tolerance: comparison of maize hybrids under water deficit condition. *Advancements in Life Sciences* 3, 51-58.

[[]Citation: Naseem, S., Ali, Q., Malik, A. (2020). Evaluation of maize seedling traits under salt stress. *Biol. Clin. Sci. Res. J.*, **2020**: 25 doi: <u>https://doi.org/10.54112/bcsrj.v2020i1.25</u>]

- Ali, Q., Ahsan, M., Tahir, M. H. N., and Basra, S. M. A. (2012). Genetic evaluation of maize (Zea mays L.) accessions for growth related seedling traits. *International Journal for Agro Veterinary and Medical Sciences* 6, 164-172.
- Ali, Q., Ali, A., Ahsan, M., Nasir, I. A., Abbas, H. G., and Ashraf, M. A. (2014). Line× Tester analysis for morpho-physiological traits of Zea mays L seedlings. *Advancements in Life sciences* 1, 242-253.
- Ali, Q., Hammad, M., Tahir, N., Ahsan, M., Basra, S. M. A., Farooq, J., and Elahi, M. (2011). Correlation and path coefficient studies in maize (Zea mays L.) genotypes under 40% soil moisture contents. *African Journal of Bacteriology Research* 3, 77-82.
- Ashraf, A., Rashid, M., Ali, Q., and Malik, A. (2020). Genetic Advances and Heritability Analysis for Seedling Growth Traits in Zea mays under Heavy Metal Stress. *Genetics and Molecular Research* 19.
- Boomsma, C. R., Santini, J. B., Tollenaar, M., and Vyn, T. J. (2009). Maize morphophysiological responses to intense crowding and low nitrogen availability: An analysis and review. *Agronomy Journal* **101**, 1426-1452.
- Buckler, E. S., Holland, J. B., Bradbury, P. J., Acharya, C. B., Brown, P. J., Browne, C., Ersoz, E., Flint-Garcia, S., Garcia, A., and Glaubitz, J. C. (2009). The genetic architecture of maize flowering time. *Science* **325**, 714-718.
- Cakir, R. (2004). Effect of water stress at different development stages on vegetative and reproductive growth of corn. *Field Crops Research* **89**, 1-16.
- Chai, Q., Gan, Y., Zhao, C., Xu, H.-L., Waskom, R.
 M., Niu, Y., and Siddique, K. H. (2016).
 Regulated deficit irrigation for crop production under drought stress. A review.
 Agronomy for sustainable development 36, 3.
- de Azevedo Neto, A. D., Prisco, J. T., Enéas-Filho, J., de Abreu, C. E. B., and Gomes-Filho, E. (2006). Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes. *Environmental and Experimental Botany* **56**, 87-94.
- Edreira, J. I. R., and Otegui, M. E. (2012). Heat stress in temperate and tropical maize hybrids: Differences in crop growth, biomass

partitioning and reserves use. *Field Crops Research* **130**, 87-98.

- Farooq, M., Hussain, M., Wakeel, A., and Siddique, K. H. (2015). Salt stress in maize: effects, resistance mechanisms, and management. A review. Agronomy for Sustainable Development 35, 461-481.
- Farre, I., and Faci, J. M. (2006). Comparative response of maize (Zea mays L.) and sorghum (Sorghum bicolor L. Moench) to deficit irrigation in a Mediterranean environment. Agricultural water management 83, 135-143.
- Kanwal, N., Ali, F., Ali, Q., and Sadaqat, H. A. (2019). Phenotypic tendency of achene yield and oil contents in sunflower hybrids. Acta Agriculturae Scandinavica, Section B—Soil & Plant Science 69, 690-705.
- Karahara, I., Ikeda, A., Kondo, T., and Uetake, Y. (2004). Development of the Casparian strip in primary roots of maize under salt stress. *Planta* **219**, 41-47.
- Mazhar, T., Ali, Q., and Malik, M. S. R. A. (2020). Effects of salt and drought stress on growth traits of Zea mays seedlings. *Life Science Journal* 17.
- Mupangwa, W., Twomlow, S., Walker, S., and Hove, L. (2007). Effect of minimum tillage and mulching on maize (Zea mays L.) yield and water content of clayey and sandy soils. *Physics and chemistry of the earth, parts* A/B/C **32**, 1127-1134.
- Mustafa, H. S. B., Ahsan, M., Aslam, M., Ali, Q., Bibi, T., and Mehmood, T. (2013). Genetic variability and traits association in maize (Zea mays L.) accessions under drought stress. *Journal of Agricultural Research* (03681157) 51.
- Saif-ul-malook, M. A., Ali, Q., and Mumtaz, A. (2014). Inheritance of yield related traits in maize (Zea mays) under normal and drought conditions. *Nat Sci* **12**, 36-49.
- Sheng, M., Tang, M., Chen, H., Yang, B., Zhang, F., and Huang, Y. (2008). Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. *Mycorrhiza* **18**, 287-296.
- Shu, L., and Liu, Y. (2001). Effects of silicon on growth of maize seedlings under salt stress. *Agro-Environmental Protection* **20**, 38-40.
- Tahir, M., Rashid, M., Ali, Q., and Malik, A. (2020). Evaluation of Genetic Variability in Wheat and Maize under Heavy Metal and Drought Stress. *Genetics and Molecular Research* 19.

[[]Citation: Naseem, S., Ali, Q., Malik, A. (2020). Evaluation of maize seedling traits under salt stress. *Biol. Clin. Sci. Res. J.*, **2020**: 25 doi: <u>https://doi.org/10.54112/bcsrj.v2020i1.25</u>]

Zubair, M., Shakir, M., Ali, Q., Rani, N., Fatima, N., Farooq, S., Shafiq, S., Kanwal, N., Ali, F., and Nasir, I. A. (2016). Rhizobacteria and phytoremediation of heavy metals. *Environmental Technology Reviews* 5, 112-119.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To of this licence, view а copy visit http://creativecommons.org/licen ses/by/4.0/. © The Author(s) 2021