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Abstract: Intellectual disability (ID) is a condition characterized by a defective adaptive and cognitive attitudes that 

can occur with various mental disorders, such as attention-deficit/hyperactivity and an autism spectrum disorder. It 

may also be associated with malformation syndromes affecting other organs. Genetic studies have linked several 

chromatin-modifying enzymes and epigenetic regulators to ID disorders (IDDs). This review explores how dysfunction 

in histone modifiers, chromatin remodelers, and methyl-DNA binding proteins can cause neurodevelopmental 

deformities and alter brain plasticity. The use of mouse models generated through human genetics has allowed 

researchers to uncover the molecular basis of ID and explore potential therapeutic strategies. Understanding the 

chromatin regulators associated with IDDs has broader implications for treating other IDDs, as they target common 

downstream genes and cellular functions. Investigating these disorders can also shed light on the function of 

chromatin regulators in brain growth, plasticity, and gene regulation, leading to new insights into fundamental 

questions in neurobiology. 
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Introduction  

Intellectual disability (ID) can result in incomplete or 

arrested mental development. It is characterized by 

the deterioration of cognitive, language, motor, and 

socialization functions at each stage of development, 

leading to an overall low level of intelligence. 

Individuals with ID struggle to adapt to their 

environment due to the pervasive impact of their 

cognitive impairments. Generally, a person with an 

intelligence quotient (IQ) of 70 or below has two or 

more behavioural deficits. The IQ is the standard test 

developed to assess the disability in humans (Selmen 

et al., 2005). In ID, the patient finds difficulty in daily 

activities such as communication, personal care, 

sociability, self-governance, health and safety, and 

academic skills (Matson et al., 2005). It is mostly 

diagnosed before the age of 18 years when a person is 

unable to perform properly or is diagnosed with 

adaptive functioning (Gorgoni et al., 2020). The ID 

Occurrence rate is 1 to 3% of the total population and 

independent of social stratum (Maulik et al., 2011). 

Instead of the universal data, it is shown that ID is 

more common in the lower socioeconomic status and 

developing areas, where its severity occurs from mild 

to worse depending on the treatment (Durkin, 2002; 

Emerson, 2007). ID is likely to occur because of 

Ecological factors (Luckasson, & Schalock, 2013; 

Emerson, 2002), but genetic factors contribute 

equally. 

In the general population, about 30% more males are 

affected by ID thano females. But it is believed that as 

IQ decreases, the prevalence of ID alsdecreasesed 

(American Psychiatric Association, 2002). Previous 

research showed that severe ID is more prevalent in 

females than males (Bradley et al., 2002). 

Classification of ID 

ID is classified into four general categories that is 

mild, moderate, severe and profound (Matson et al., 

2005). But some epidemiological studies classified ID 

into two categories: mild ID with IQ 50-70 and severe 

ID with IQ<50 (Ropers and Hamel, 2005). The 
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occurrence of ID differs depending upon the study 

design, and the age of the subject caused the 

variabilities (Leonard and Wen, 2002), as shown in 

Table 1. 

ID's severity can be divided into syndromic 

intellectual disability (SID) and non-syndromic 

intellectual disability (NSID). In the SID, the patient 

usually has one more clinical feature: co-morbidities 

besides ID.  While the NSID, the patient has ID as the 

only clinical feature. But to create the boundary 

between SID and NSID is difficult. Diagnosing one or 

more clinical features (neurological and psychiatric 

abnormalities) in these patients is very difficult to rule 

out. Also, the ID syndromes are so subtle that they are 

very difficult to find as they may be linked to genetic 

defects (Ropers, 2006). 

Causes of ID 

The environmental, genetic factors or both contribute 

to ID. There are about 60% unknown cases of ID 

which remain unidentified (Rauch et al., 2006). The 

environmental causes of ID include exposure to 

toxins, teratogens, viruses or radiation, which can 

damage (severe head trauma or injury) brain cells and 

cause a lack of oxygen in the brain tissues, which 

eventually die and causes more damage to brain. 

These factors mostly occurred due to the lack of 

awareness in underdeveloped or developing 

countries. 
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Genetic factors 

Genetic defects cause the majority of cases of 

intellectual disability (ID). Specifically, about 25-

50% cases of ID are attributed to genetic defects, and 

this proportion tends to increase with the intensity of 

the ID (McLaren and Bryson, 1987). The most 

common cause of ID is chromosomal abnormalities, 

and numerous abnormalities are found (Rauch et al., 

2006). Autosomal trisomies and X-chromosome 

aneuploidies are often associated with intellectual 

disability (ID) in humans due to their link to genetic 

instability. Down syndrome, caused by trisomy 21, is 

a frequent form of ID. Numerous genetic components 

have been recognized that participate in the 

development of ID (Zahir and Friedman, 2007). The 

less common forms of chromosomal abnormalities 

include X-fragile chromosome syndrome (Miclea et 

al., 2015), Prader-Willi syndrome (Jauregi et al., 

2007), Rett syndrome (Weaving et al., 2005), 

neurofibromatosis (Mouridsen and Sorensen, 1995), 

tuberous sclerosis (Curatolo et al., 2015), Lesch-

Nyhan syndrome (Nyhan et al., 1989) and 

adrenoleukodystrophy (Feanny et al., 1987) rarely 

occur (Figure 1). In the last 15 years, many forms of 

NSID were identified due to environmental and 

genetic factors. Autism or neurodevelopment disorder 

is likely to be occurred by genetic basics, or 

environmental factors may contribute equally. The 

NSID is multifactorial, with one or more genes 

involved in the disease. It can either be autosomal or 

X-linked (Chelly et al., 2006). 

Acquired factors 

Acquired factors may be congenital or developmental. 

The congenital factors include the neonatal metabolic 

hypothyroidism, toxins such as lead poisoning 

(Tellez-Rojo et al., 2006), fetal alcohol syndrome 

(Kodituwakku, 2007) and prenatal exposure to 

substances (Morrow et al., 2006), and the infectious 

diseases such as rubella (Desmond et al., 1969), 

syphilis (Gilad et al., 2007), toxoplasmosis (Tomita et 

al., 2021) and simple herpes genital type II (Seppanen 

et al., 2006). 

During pregnancy, in the prenatal period, 

complexities such as uncontrolled diabetes (Leonard 

et al., 2006), intrauterine malnutrition (Calis et al., 

2007), vaginal hemorrhages (Schellae et al., 1994), 

placenta previa (Naeye, 1978) and umbilical cord 

prolapse (Niswander et al., 1975). Also, in this period, 

prolonged suffering from anoxia and asphyxia related 

suffocation also retard the growth of brain tissues 

(Slitonen et al., 2003). In postnatal period, infectious 

diseases like encephalitis and meningitis affects the 

fetus (Noyola et al., 2001) shown in figure 2. 

Environmental and socioeconomic factors 

Many epidemiological studies showed that 

intellectual disability mostly related to family status. 

There are many notable links between ID and poverty. 

Firstly, poverty exposes the person to many 

environmental and psychotic stimulus (Leonard et al., 

2005). Second, if a person in the poor family has ID, 

it more causes a burden on the other family members. 

These factors are mostly affected in the developing 

countries (Emerson and Hatton, 2007). These 

interactions result in the child's malnutrition in 

prenatal, postnatal and even at the younger age. 

Epigenetic mechanisms in ID 

The ID is mostly affected by epigenesis, which is the 

not the change in the DNA sequence but only 

regulated the chromatin state in the DNA 

(Waddington, 1956). These mechanisms are 

interrelated, but chromatin compaction is the only 

thing common in them. Impaired transcription results 

in the loose of the facilitated gene. The molecular 

mechanisms still need to be explained. Epigenetic 

mechanisms participate in coordination among genes 

and the environment, particularly in learning and 

memory processes. These mechanisms contribute to 

brain plasticity, which involves modifying neuronal 

structures in response to external inputs. Recent 

studies have demonstrated that neural impulses 

initiate the production of new proteins in dendrites, 

which in turn affect the function of postsynaptic 

neurons (Cajigas et al., 2010). This review highlights 

the epigenetic dysregulation in ID. 

1. Chemical modification of DNA 

An enzyme, DNA methyltransferases (DNMTs) 

catalyze the DNA modifications. DNMTs usually 

transfer the methyl group from the S-adenyl 

methionine (SAM) to the cytosine residues to form the 

5-methyl cytosine (5mC). Cytosine methylation 

usually occurs at the CpG site and then 5mC 

demethylated the thymine (Bird, 1980). These sites 

are found on the gene promotors regions, which are 

highly conserved andhave high density of CpG sites 

(>50%). In general, these sites usually interfere with 

the transcription binding factors and repress the 

methyl binding domains of proteins (Bird et al., 1980; 

Nan et al., 1993). 

In mammals, three different types of DNMTs exist: 

DNMT1 is the maintenance DMNT, as it binds to 

hemi-methylated sites and prevents demethylation 

during the DNA synthesis. DMNT3a and DMNT3b 

are the de novo DMNTs (Okanno et al., 1999). As a 

fact, DMNTs are abundantly expressed in the brain 

not only in the neurodevelopmental stage but also in 

the postmitotic neurons, which explains their role 

beyond the DNA methylation (Feng et al., 2005). The 

DNA methylation is a static epigenetic process that 

can only be affected by the demethylation during the 

cell division. So, the DNA methylation should be 

regulated. Ten-eleven translocations (TET) enzymes 

usually oxidise the 5mC. In the next step, it is 

deaminated by the AID/Apobec enzymes, which 

oxidise the TET enzymes. In the end, the oxidized 

product is repaired by BER (Ito et al., 2011). 
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Many studies show that DNA methylation is related 

to intellectual by involving the genes. When 

considering the contextual fear conditioning in the 

rodent model to study memory; during memory 

formation, DNMTs are elevated in hippocampus, 

resulting in increased DNA methylation at the 

promoter of the memory suppressor gene PP1, and 

decreased methylation at the promoter of the synaptic 

plasticity gene RELN throughout memory 

consolidation (Miller and Swett, 2007). This also 

happens with the BDNF gene, in which DNA 

methylation occurs in the learning task, which results 

in increased BDNF exon I and IV in the fear memory 

consolidation (Lubin et al., 2008). The DNA 

methylation changes in the brain are transientand 

revert in 24 hours. This suggests that DNA 

methylation have significant involvement in the 

formation and consolidation of memories in the 

hippocampus (Figure 2) 

Additionally, the brain exhibits elevated amounts of 

two additional categories of methylation: non-CpG 

methylation (mCH, where H represents adenine A, 

cytosine C, or thymine T) and hydroxymethylation 

(5hmC), both of which are involved in neuronal 

modifications (Varley et al., 2013; Song et al., 2011). 

mCH is not present in the fetal cortex but accumulates 

during postnatal development, leading to DNA 

methylation and gene repression in 

neurodevelopment. From this point, DNMT3a plays 

an important role in the neurons during development. 

Higher level of mCH in the glial cells causes the 

suppression of neuron-specific gene and methylated 

at the level of CH in the glial cells (Lister et al., 2013). 

Overexpression of TET1 causes disrupts the 

formation of contextual fear memories. (Kass et al., 

2013), while the TET1 downregulation leads to 

deficiencies in synaptic plasticity and memory 

excitation (Rudenko et al., 2013). 

Numerous researchers reported the function of DNA 

methylation in the hippocampus during memory 

formation and consolidation but have not explored the 

long-term storage of memories. It has been 

established that a burst of waves, known as sharp 

waves, promotes plasticity, facilitating the transfer of 

memories from the hippocampus to the neocortex 

(Wiltgen et al., 2004). These waves result in the 

epigenetic storing of learning in the cortical cells by 

DNA methylation and resistance to erasing the 

DNMT1 self-perpetuating mechanism, which usually 

methylated the hemi-methylated and unmethylated 

stands of DNA (Heyward and Sweatt, 2015). The CaN 

(calcineurin) gene is involved in the maintenance of 

memories, as delayed to persistent DNA methylation 

occurs in cortical neurons for 1 to over 30 days, 

respectively, causing contextual fear memory to 

transition from transient to remote (Miller et al., 

2010). 

2. Histone modification 

The primary constituents of chromatin are histones, 

which can be categorized into four major types: H4, 

H2A, H3, and H2B. These histones correlated tightly 

with DNA to form a nucleosome. H1 controls the 

folding of the nucleosome, while posttranslational 

modifications (PTMs) govern chromatin compaction 

by modifying the protruding end of the histone tail 

(Bannister and Kouzarides et al., 2011). Several 

PMTs act on the tail of histone such as acetylation, 

methylation, phosphorylation, SUMOylation and 

ADP-ribosylation (Shin et al., 2015). 

Histone acetylation usually causes a positive effect on 

chromatin folding by neutralizing acetyl group from 

the residues of lysine (K) and arginine (R), thus 

reducing the electrostatic interactions in the DNA 

nucleosome. These epigenetic writers are known as 

histone acetyltransferases (HATs), and the erasers 

known as histone deacetylases (HDACs) (Lopez and 

Barco, 2014). This histone acetylation causes memory 

regulation by the ERK/MAP pathway regulation in 

the cortex by lysine acetylation (Levenson et al., 

2004). Many types of research revealed the HDACs 

inhibitor (HDADi) improves the cognitive 

impairment and increase memory and learning (Lopez 

and Barco, 2014).  These modification causes the 

transcription and prepares the cells to initiate the gene 

regulation on signals (Lopez-Atlaya et al., 2013). 

CREB is a specific transcriptional factor that 

coactivates the CBP through HAT domain, increases 

the acetylation process at gene level, and helps in 

memory integration (Korzus et al., 2004)(Figure 2). 

Many HDAC isoforms regulate the adult form, 

specifically at the histone acetylation level. For 

example, HDAC5 causes the hypersensitive response 

to chronic drug abuse (Tsankova et al., 2006); 

HDAC2 causes the deregulation in memory formation 

and synaptic plasticity (Guan et al., 2009), and 

HDAC3 inhibits long-term memory formation 

(McQuown et al., 2011). SIRT1 impairs the 

hippocampal formation of memory by decreasing the 

dendritic branching and spines, which is the special 

structure in learning (Michan et al., 2010). HDCA1 

requires the deacetylation of H3K9 for the fear 

extinction learning (Bahari-Javan et al., 2012) and 

HDAC4 requires memory formation and synaptic 

plasticity (Kim et al., 2012). 

The process of histone phosphorylation is closely 

linked to histone acetylation. Specifically, the 

phosphorylation of histone H3 at the serine (S) 10 site 

(H3S10P) occurs alongside the acetylation of histone 

H3K9. This biochemical event plays a critical role in 

forming spatial memory and activating many genes 

(such as c-Fos, Erg-1, and Arc) by the ERK/MAPK 

pathway (Carter et al., 2015). 

The histone acetylation results in transcriptional 

regulation, while the methylation of histone effects 

mostly depends upon the docking protein complexes. 
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For instance, the H3K4 methylation and mono-

methylation of H3K9 cause transcriptional activation, 

while H3K9me2 and H3K9ma3 cause transcriptional 

knockdown. Histone methylation occurs either at 

lysine (K) or arginine (R) is mostly carried out by the 

SET of proteins domain known as histone methyl 

transferase (HMTs). HMTs are regulated by the 

histone demethylases (HDMs), such as LSD1 for 

H3K4me and H3K4me2 and JMJD1a for H3K9me 

and H3K9me2 (Lubin et al., 2011). 

Recent study in which mice deficit with Mll, a H3K4 

methyltransferase, shows defects in fear memory 

formation (Gupta et al., 2010). GLP/G9a, an 

H3K9me2 methyltransferase, plays an important role 

in cognition and switching chromatin signals 

(Benevento et al., 2015), acting during development 

and modulating the gene expression by recruiting the 

enzymes. This complex helps in memory 

consolidation from hippocampus to cortex (Gupta et 

al., 2012). GLP/G9a is also important in developing 

the behaviour because its deficiency cause the defects 

in learning, memory and motivation (Schaefer et al., 

2009). 

3. Chromatin remodeling 

Nucleosome remodeling complexes (NRCs) use 

ATP-dependent mechanisms to change the position of 

nucleosomes by enhancing nucleosome sliding, 

expulsion, and exchange of histone variants. Studies 

have shown that the neuron-specific Brg1/hBrm 

associated factor (nBAF) complex, which belongs to 

the SWI/SNF family, is involved in activating gene 

expression during both development and cognition. 

Upregulation of BAF45b and BAF45c subunits and 

BAF53a and BAF53b is essential in postmitotic 

neurons (Figure 2) and control the BRG1’s ATPase 

activity (Olave et al., 2012). The mice deficit with 

BAF53b showed large impairments in long-term 

memory consolidation (Vogel-Ciernia et al., 2013). 

4. Noncoding RNAs (ncRNAs) 

ncRNAs are part of the transcript that are not 

translated to proteins. It has two main categories: 

small RNAs and long noncoding RNAs (lncRNAs). 

The first comprehends the micro RNA (miRNA), 

which inhibits the gene expression at the target and 

interacts with PIWI interacting RNAs (piRNAs) and 

suppresses RNA mediated DNA methylation. The 

lncRNAs role is not well known but it regulates the 

gene expression by guiding and scaffolding RNAs 

and targeting the genomic locations (Cao et al., 2006).  

TUNA, RMST, and DALI regulate neuronal 

differentiation, which guide transcription factors, 

chromatin remodelling, and DNMTs to crucial 

locations (Chalei et al., 2014; Kerioglu et al., 2013). 

In many cases, methyl-binding proteins bring in 

HDACs, which work together through cytosine 

methylation and histone deacetylation to silence gene 

transcription (Vaissiere et al., 2008). By comparing 

these mechanisms, it can be said that gene expressions 

controlled brain activity by controlling the DNA 

methylation, histone acetylation and chromatin 

remodelling. (Figure 2) 
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Treatment of ID 

ID is now considered a neurodevelopmental disorder 

rather than just focusing on the intellectual level. A 

patient may adapt to existing environment if the 

positive reinforcements are given to them 

continuously. As ID cannot be cured completely, 

behavior is normalized according to society. 

1. Environment enrichment 

In this review, previously, it is pointed out that 

environment has a strong influence on epigenetic 

modifications. The microenvironment affects or 

interrupts the genome as any stage of development in 

any area of brain. The monozygotic pairs could show 

this effect, which are genetically similar but 

phenotypically changed if they drifted apart (Castillo-

Fernandez et al., 2014). Environment enrichment 

(EE) is mostly used in rodent models to enhance 

learning and memory. For example, keeping the lab 

mice in EE with large cages and many toys to develop 

their sensory, cognitive and motor skills. The results 

showed that mice living in EE had improved learning 

and memory (Grill et al., 2009), and delayed deficits 

in neurological disorders mouse model 

(Nithianantharajah and Hannan, 2006). EE did not 

interfere with the genome but only improve the 

dendritic branching and spines as shown in Down’s 

syndrome model (Dierssen et al., 2003). In ID, the EE 

may cause some modification in the epigenetic 

mechanisms, as the EE only lasts for 3-4 weeks while 

behavioural changes are lifetime (Shin et al., 2013). 

Four weeks training in the EE conditions to rescue the 

contextual fear conditioning and water maze assays, 

there is an increased histone acetylation residues 

(Fischer et al., 2007). 

Understanding the complete mechanism to cure ID, a 

new class of therapeutics was developed known as 

enviro mimetics. Enviromimetics mimics the EE 

beneficial effects on learning (Nithianantharajah and 

Hannan, 2006). Many research using EE paves the 

way for the nonpharmacological treatment of ID. 

2. Epigenetic drugs in ID 

To understand ID and its treatment, a thorough gene 

profile was developed to know the key genes causing 

the impairments (Schaefer et al., 2015). A most 

promising way to last the transcriptional changes is by 

using cancer research (Dawson and Kouzarides, 

2012). Epigenetic changes are reversible so 

alleviating some gene expressions will help control 

the ID. FDA already approves some drugs, two 

DNMT inhibitors (5-azacytidine and decitabine) and 

two HDAC inhibitors (Nebbioso et al., 2012). Also, 

the valproic acid, already utilized against the epilepsy 

and bipolar defects. It revealed the HDAC inhibition, 

anticholinergic action, and the first epidrug used in 

neurological disorders (Papi et al., 2010). But in using 

these types of drugs caused the genome-wide and non-

chromatin effect as they may interfere with the 

nonhistone proteins. So, much research are conducted 

to find the specific drugs that only target the particular 

gene (de Groote et al., 2012). 
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