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Abstract: Soil biodiversity plays a crucial role in maintaining agricultural productivity and ecosystem stability; however, information on the seasonal 

dynamics of soil fauna in Pakistani agroecosystems remains limited. Objective: To evaluate the seasonal variation in insect and earthworm 

communities and their relationship with key soil environmental factors in major crop systems of Punjab, Pakistan. Methods: A field-based 

observational study was conducted in agricultural soils of Sheikhupura district, Punjab, under wheat–rice and wheat–maize cropping systems. Surveys 

were carried out during spring, summer, autumn, and winter. Insect fauna were sampled using pitfall traps, while earthworms were collected through 

soil monolith extraction. Faunal abundance, diversity, density, and biomass were assessed. Soil moisture, temperature, and organic matter were 

measured concurrently. Data were analyzed using two-way analysis of variance to determine seasonal effects. Pearson correlation analysis evaluated 

associations between soil variables and earthworm parameters, while stepwise multiple regression analysis identified predictors of earthworm biomass. 

Statistical significance was set at p < 0.05. Results: Season exerted a significant effect on all soil faunal parameters (p < 0.001). The lowest mean 

insect abundance was observed in summer (162.17 ± 37.58 individuals), whereas the highest values were recorded in spring (329.50 ± 10.48 

individuals) and autumn (321.67 ± 38.44 individuals). Insect taxonomic richness was lowest in winter (12.33 ± 2.07 taxa). Earthworm population 

density peaked during autumn (97.17 ± 20.16 individuals m⁻²) and winter (92.00 ± 13.52 individuals m⁻²), while the lowest density occurred in summer 

(26.33 ± 16.86 individuals m⁻²). Earthworm biomass followed a similar seasonal trend, with the highest value in autumn (111.42 ± 18.69 g m⁻²). Soil 

moisture showed a strong positive correlation with earthworm density (r = 0.742, p < 0.001), whereas soil temperature was negatively correlated (r 

= −0.618, p = 0.002). Soil moisture, temperature, and organic matter collectively explained 79% of the variation in earthworm biomass (R² = 0.79). 

Conclusion: Seasonal climatic factors strongly regulate insect and earthworm communities in semi-arid agroecosystems of Pakistan. These findings 

highlight the ecological importance of seasonal dynamics in shaping soil biodiversity and emphasize the need to incorporate climate-sensitive strategies 

into sustainable soil management practices. 
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Introduction 

Soil biodiversity plays a central role in sustaining agricultural 

productivity and ecosystem stability by regulating key processes, 

including nutrient cycling, organic matter decomposition, soil 

aggregation, and water infiltration (1). The diversity and functional 

composition of soil biota underpin ecosystem multifunctionality and 

resilience, particularly under increasing climatic variability and 

anthropogenic pressures (2). However, intensive agricultural practices, 

including frequent tillage, simplified crop rotations, and high chemical 

inputs, have been widely associated with declines in soil biological 

communities, potentially compromising soil health and long-term 

agroecosystem sustainability (3). Understanding the spatiotemporal 

dynamics of soil organisms within managed landscapes is therefore 

critical for developing biodiversity-based strategies to support sustainable 

food production. 

Among soil invertebrates, insects and earthworms represent ecologically 

significant functional groups with disproportionate influence on soil 

processes. Earthworms are recognized as ecosystem engineers due to their 

ability to modify soil structure through burrowing and casting, enhance 

aeration and infiltration, and facilitate the incorporation of organic 

residues into deeper soil layers, thereby accelerating nutrient turnover and 

improving soil physical properties (4). Meta-analytical evidence further 

suggests that earthworm activity can increase plant productivity under 

favorable soil and management conditions (5). Similarly, soil- and 

surface-active insects contribute to residue fragmentation, detrital food 

web dynamics, trophic regulation, and biological control, linking 

belowground and aboveground processes in agroecosystems (6). The 

abundance and activity of these faunal groups are strongly regulated by 

environmental conditions, particularly soil moisture, temperature, and 

organic matter availability (7). 

Seasonality is a dominant ecological driver shaping the distribution, 

activity, and detectability of soil fauna in agricultural systems. Temporal 

fluctuations in temperature, precipitation, and crop phenology generate 

recurring shifts in microclimatic conditions that can either promote or 

constrain faunal activity (8). Earthworm populations typically exhibit 

higher density and biomass during cooler, wetter periods. At the same 

time, surface activity and detectability decline markedly during hot, dry 

seasons due to physiological stress and vertical migration into deeper soil 

layers (9,10). Insect communities in croplands likewise demonstrate 

pronounced seasonal dynamics, with peaks in abundance and diversity 

commonly observed during spring and autumn when moderate 

temperatures and increased vegetation cover provide favorable habitat 

conditions and resource availability (11). These seasonal patterns are 

further modulated by agricultural management practices such as 

irrigation, residue retention, and crop rotation, which influence soil 

microclimate and habitat structure (12). 

South Asian agroecosystems, particularly those in monsoon-influenced 

regions, are characterized by strong seasonal contrasts in temperature and 

moisture regimes, creating dynamic soil environments for belowground 
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communities. Central Punjab, Pakistan, supports intensive wheat–rice and 

wheat–maize cropping systems sustained by irrigation and seasonal 

rainfall. Yet, these systems are under increasing pressure from climate 

variability, water scarcity, and land degradation. Despite the ecological 

and agronomic importance of soil biodiversity, empirical data on the 

seasonal dynamics of soil insects and earthworms in Pakistani agricultural 

landscapes remain limited. Most existing studies have focused on single 

taxa, short temporal windows, or non-agricultural settings, thereby 

limiting their applicability to field-based soil health management under 

local conditions (13,14,15). Establishing baseline, multi-seasonal 

assessments of key soil faunal groups within dominant cropping systems 

is therefore essential to improve understanding of soil biological 

responses to environmental variability and to inform sustainable soil 

management strategies in semi-arid agroecosystems. 

Methodology  

The study was conducted in agricultural fields of Sheikhupura District, 

Punjab, Pakistan, located in the central irrigated plains characterized by a 

semi-arid to sub-humid climate with marked seasonal variation. The area 

experiences hot summers, mild transitional seasons, cool winters, and 

monsoon rainfall, with dominant cropping systems comprising wheat–

rice and wheat–maize rotations. Six representative fields were selected, 

three under each cropping system, to capture variability associated with 

crop type while maintaining comparable soil and management conditions. 

Sampling sites within each field were selected randomly, avoiding field 

margins, irrigation channels, and visibly disturbed patches to minimize 

edge effects and sampling bias. 

Field sampling was conducted across four distinct seasons within a single 

annual cycle: spring (March to April), summer (June to July), autumn 

(September to October), and winter (December to January). At each 

sampling occasion, standardized protocols were applied consistently 

across all fields and seasons. Ground-dwelling and surface-active insects 

were sampled using pitfall traps constructed from plastic containers (8 cm 

diameter, 10 cm depth) installed flush with the soil surface. Five traps 

were placed systematically within each field and filled with 70% ethanol 

as a preservative. Traps remained active for 48 h, after which contents 

were collected, transferred into labeled containers, and transported to the 

laboratory. Insects were sorted, counted, and identified to order or family 

level using standard taxonomic keys. Community parameters, including 

total abundance, taxonomic richness, Shannon–Wiener diversity index 

(H′), and Simpson diversity index (1–D), were calculated for each 

sampling unit. 

Earthworm populations were assessed using the soil monolith hand-

sorting method. At each sampling point, a soil block measuring 25 × 25 × 

30 cm was excavated and manually sorted in the field to extract 

earthworms. Where necessary, a dilute mustard solution was applied to 

stimulate the emergence of deep-burrowing individuals. Collected 

specimens were gently washed to remove adhering soil, counted, and 

weighed fresh using a digital balance. Earthworm density was expressed 

as individuals per square meter, and biomass was expressed as grams per 

square meter after appropriate area-based standardization. 

Soil environmental variables were measured concurrently with biological 

sampling. Soil temperature was recorded in situ at 10 cm depth using a 

calibrated soil thermometer. Soil moisture content was determined 

gravimetrically by oven-drying subsamples at 105 °C to constant weight. 

Soil pH was measured using a digital pH meter in a 1:2.5 soil-to-distilled 

water suspension. Soil organic matter content was estimated using the 

Walkley–Black wet oxidation method. All laboratory analyses followed 

standardized soil analysis protocols to ensure reproducibility and 

accuracy. 

Data were compiled and managed in Microsoft Excel and analyzed using 

IBM SPSS Statistics (version 26.0). Descriptive statistics were computed 

and expressed as mean ± SD. The normality of continuous variables was 

assessed using the Shapiro–Wilk test, and homogeneity of variances was 

examined using Levene’s test. Two-way analysis of variance was applied 

to evaluate the effects of season and cropping system on insect abundance, 

diversity indices, earthworm density, and biomass. Where significant 

effects were observed, post hoc pairwise comparisons were performed 

using Tukey’s honestly significant difference test. Associations between 

soil environmental variables and faunal parameters were examined using 

Pearson correlation coefficients. Multiple linear regression analysis was 

performed to identify key environmental predictors of earthworm 

biomass. Statistical significance was defined at p < 0.05. 

Results 

Terms of the insect community characteristics showed substantial 

seasonal variability during the study period. Average abundance, at 

329.50 ± 10.48 individuals, was highest in spring, followed by autumn 

(321.67 ± 38.44 individuals), and lowest in summer (162.17 ± 37.58 

individuals), followed by winter (179.17 ± 23.44 individuals). In the same 

way, insect richness was highest in spring (22.33 ± 1.63 taxa) and 

reduced drastically in winter (12.33 ± 2.07 taxa). Similar seasonal trends 

were observed in estimates of species diversity (Shannon H′ and Simpson 

1–D), which showed their lowest values in summer and winter, 

suggesting community simplification. These results are epitomized in 

Table 1 and graphically represented in Figure 1 (mean insect abundance 

by season) and Figure 2 (mean insect richness by season). As indicated in 

the bar plots, peaks are clearly observed in spring and autumn; summer 

shows the least insect activity. Two-way ANOVA revealed a highly 

significant effect of season on insect abundance and richness (p < 0.001). 

Cropping system exerted a significant but comparatively smaller effect (p 

< 0.05), while the interaction between season and cropping system was 

not statistically significant. Post-hoc Tukey comparisons confirmed 

significant differences between spring and summer, spring and winter, 

autumn and summer, and autumn and winter (p < 0.001). No significant 

difference was observed between spring and autumn (p > 0.05). 

Strong seasonal fluctuations in earthworm populations were evident. 

Autumn had the highest mean density (97.17 ± 20.16 individuals m⁻²), 

followed by winter (92.00 ± 13.52 individuals m⁻²). Moderate density was 

observed during the spring (81.33 ± 12.08 individuals m⁻²), followed by 

the summer, which presented the lowest values (26.33 ± 16.86 individuals 

m⁻²). The mass of earthworm showed a similar tendency, with the highest 

value in autumn (111.42 ± 18.69 g m⁻²) and winter (84.87 ± 16.34 g m⁻²), 

followed by summer (22.93 ± 17.17 g m⁻²). These seasonal patterns are 

outlined in Table 2 and shown graphically in Figures 3 (earthworm 

density) and 4 (earthworm biomass). The plot shows an abrupt decline 

during summer, followed by a recovery in cooler, wetter months. Two-

way ANOVA indicated that season significantly affected earthworm 

density and biomass (p < 0.001). The cropping system exhibited a 

significant main effect (p < 0.05), with interaction effects less evident. 

Correlation analysis showed that there were significant relationships 

between soil environmental characteristics and the dynamics of soil 

fauna. Soil moisture was significantly and positively correlated with 

earthworm density (r = 0.742, p < 0.001) and biomass (r = 0.701, p < 

0.001). On the other hand, earthworm density was significantly negatively 

related to soil temperature (r = –0.618, p = 0.002). The content of organic 

matter was positively correlated with earthworm biomass and moderately 

associated with insect abundance. These relationships are presented in 

Table 3 and Figure 5 (soil moisture vs. earthworm biomass) and Fig.6 

(soil temperature vs. earthworm density). The distributions of the scatter 

plots show a positive linear trend for influence on moisture and organic 

matter, whereas it is negative for influence based on temperature. Multiple 

linear regression analysis showed that soil moisture, temperature, and 

organic matter accounted for 79% of the variance in earthworm biomass 

(R² = 0.79, p < 0.001). The significant positive coefficients were for soil 

moisture and organic matter, while a negative coefficient was observed 

for soil temperature (Table 4). 



Biol. Clin. Sci. Res. J., Volume 6(12), 2025: 2160                                                                                                       Fatima et al., (2025)        

26 
 

Table 1: Seasonal Variation in Insect Community Parameters (Mean ± SD) 

Season Insect Abundance Insect Richness Shannon Index (H′) Simpson Index (1–D) 

Spring 329.50 ± 10.48 22.33 ± 1.63 1.71 ± 0.05 0.81 ± 0.03 

Summer 162.17 ± 37.58 16.50 ± 1.76 1.48 ± 0.09 0.73 ± 0.04 

Autumn 321.67 ± 38.44 20.33 ± 2.16 1.66 ± 0.07 0.79 ± 0.05 

Winter 179.17 ± 23.44 12.33 ± 2.07 1.32 ± 0.08 0.68 ± 0.06 

 

Table 2: Seasonal Variation in Earthworm Parameters (Mean ± SD) 

Season Earthworm Density (ind. m⁻²) Earthworm Biomass (g m⁻²) 

Spring 81.33 ± 12.08 77.08 ± 19.78 

Summer 26.33 ± 16.86 22.93 ± 17.17 

Autumn 97.17 ± 20.16 111.42 ± 18.69 

Winter 92.00 ± 13.52 84.87 ± 16.34 

Table 3: Pearson Correlation Coefficients Between Environmental Variables and Soil Fauna 

Variable Pair r p-value 

Soil Moisture – Earthworm Density 0.742 <0.001 

Soil Temperature – Earthworm Density –0.618 0.002 

Organic Matter – Earthworm Biomass 0.701 <0.001 

Soil Moisture – Insect Abundance 0.564 0.005 

Table 4: Multiple Linear Regression Model Predicting Earthworm Biomass 

Predictor β Coefficient p-value 

Soil Moisture 3.842 <0.001 

Soil Temperature –1.265 0.009 

Organic Matter 45.317 <0.001 

 
 

Figure 1: Seasonal variation in mean insect abundance across four 

seasons. Bars represent seasonal means. 

 

Figure 2: Seasonal variation in mean insect richness across four 

seasons. Bars represent seasonal means. 

 

 

 

Figure 3: Seasonal variation in mean earthworm density (individuals 

m⁻²). Bars represent seasonal means. 

Figure 4: Seasonal variation in mean earthworm biomass (g m⁻²). Bars 

represent seasonal means. 
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Figure 5: Relationship between soil moisture (%) and earthworm 

biomass (g m⁻²). 

Figure 6: Relationship between soil temperature (°C) and earthworm 

density (individuals m⁻²). 

Discussion 

 

The current study reveals substantial seasonal variability in insect and 

earthworm communities, highlighting the influence of seasonal changes 

on biodiversity metrics. In this discussion, we compare the findings from 

our tables on insect abundance, richness, and earthworm populations with 

recent literature to better understand these dynamics. 

In our findings, insect abundance peaked in spring (329.50 ± 10.48 

individuals), followed by autumn (321.67 ± 38.44 individuals), and 

showed reduced activity in summer (162.17 ± 37.58 individuals) and 

winter (179.17 ± 23.44 individuals). Insect richness mirrored this pattern, 

being highest in spring (22.33 ± 1.63 taxa) and significantly lower in 

winter (12.33 ± 2.07 taxa). These findings align with the works of Mallesh 

et al., who documented similar trends in agricultural ecosystems, 

attributing spring peaks to increased floral resources and habitat 

availability (16). Carvalho et al. also observed robust insect diversity in 

tropical ecosystems during warmer months, reinforcing the significance 

of temperature and moisture for insect community dynamics (17). 

Moreover, the Shannon and Simpson diversity indices reflected lower 

values during summer and winter, affirming community simplification 

during these periods. Priyadarshana et al. emphasized the impact of 

habitat diversity on beneficial insect populations, suggesting that less 

diverse environments, such as those in summer, may experience similar 

declines in community structure (18). The two-way ANOVA results 

further corroborate these findings, illustrating a significant effect of 

season on both abundance and richness, akin to patterns observed in 

multiple agroecological studies where seasonal climate variations were 

shown to influence insect dynamics (19, 20). 

Traditional agricultural practices and environmental stressors have been 

cited for exacerbating community simplification during less favorable 

seasons. For instance, Chang et al. indicated that agroecosystem 

affiliations directly affect overall species richness, as evidenced by the 

reduced richness observed in our winter samples (21). The significance of 

cropping systems, albeit smaller than seasonal effects, underscores the 

intricate balance between agricultural dynamics and insect biodiversity, 

echoing findings by Zodinpuii et al., who noted that crop management 

impacts macroarthropod diversity (22). 

Our results, particularly the Tukey post hoc analysis showing significant 

differences among seasons, reaffirm the critical influence of 

environmental conditions on community interactions, similar to 

observations in Mali’s cropping systems, where variations in seasonal 

rainfall significantly affected pest communities (17, 23). 

Earthworm populations exhibited a distinct seasonal trend, with peak 

densities recorded in autumn (97.17 ± 20.16 individuals m⁻²) and winter 

(92.00 ± 13.52 individuals m⁻²), and significantly lower densities in 

summer (26.33 ± 16.86 individuals m⁻²) and spring (81.33 ± 12.08 

individuals m⁻²). This pattern corresponds with prevailing literature, as 

observed by Alim et al., who reported similar earthworm dynamics 

influenced by temperature and moisture availability (24). Our correlation 

analysis supports the conclusion that soil moisture is a crucial factor 

positively influencing earthworm density, consistent with the work of 

Naumova et al., who highlighted the necessity of moisture for soil fauna 

activity (25). 

The seasonal biomass of earthworms followed a similar distribution 

pattern, with the highest biomass in autumn (111.42 ± 18.69 g m⁻²), which 

aligns with the findings of Soltani and Eya, who related earthworm 

biomass positively with nutrient-rich soils found in specific cropping 

seasons (19). According to the research conducted by Guimarães et al., 

variations in earthworm populations are linked to soil health and organic 

matter levels, lending credence to our observations of organic matter 

correlations with biomass (26). 

The significant relationships identified between soil moisture and both 

earthworm density and biomass provide important directions for adaptive 

land management strategies. Multiple linear regression revealed that soil 

moisture, temperature, and organic matter accounted for 79% of the 

variance in earthworm biomass. This aligns with the research by Muita et 

al., which emphasizes soil properties in shaping biotic interactions and 

their subsequent effects on crop yield and soil health (27). 

The impact of organic matter on biodiversity enhances the ecological 

stability of agricultural systems, echoing findings by Njue et al., who 

noted that organic practices improve beneficial insect populations and 

enhance soil health (28). The observed negative relationship between soil 

temperature and earthworm density corroborates the literature on thermal 

sensitivity in soil fauna, suggesting strategic management opportunities 

in the context of climate variability (29). 

Conclusion 

This study demonstrates that soil insect and earthworm communities in 

agricultural soils of Sheikhupura are strongly structured by seasonal 

climatic variation. Insect abundance and richness were highest in spring 

and autumn, while earthworm density and biomass peaked in autumn and 

winter under moderate temperatures and higher soil moisture. Soil 

moisture and organic matter were the strongest positive drivers of 

earthworm biomass, whereas higher soil temperature negatively affected 

earthworm density. Seasonal effects outweighed cropping system 

influences, highlighting the sensitivity of soil biota to environmental 

conditions. These findings provide baseline evidence on seasonal soil 

fauna dynamics in central Punjab and support biodiversity-based farming 

approaches to enhance soil health and long-term agroecosystem 

sustainability. 

Recommendations 

Practices that improve soil moisture retention and organic matter inputs, 

including reduced tillage, residue retention, organic amendments, and 

cover cropping, should be promoted to sustain soil fauna, particularly 
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during dry periods. Optimized irrigation during summer may help 

mitigate moisture stress on soil organisms, while excessive chemical 

inputs should be minimized to protect beneficial biota. Long-term 

monitoring and species-level studies are recommended to capture 

interannual variability and refine biodiversity-based soil management 

strategies. 
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