

# Development of High Yielding and Early Maturing Cotton Variety Cyto-178 With Better Adaptation to Climatic Condition of Punjab

Farzana Ashraf<sup>1</sup>, Khezir Hayat<sup>1</sup>, Hafiz Muhammad Imran<sup>1</sup>, Muhammad Akbar<sup>1</sup>, Noor Muhammad<sup>\*1</sup>, Asifa Hameed<sup>2</sup>, Rashida Aslam<sup>1</sup> Adeel Ahmad<sup>1</sup>, Muhammad Azam Mian<sup>1</sup>, Muhammad Adnan<sup>1</sup>

> <sup>1</sup>Central Cotton Research Institute, Pakistan Central Cotton Committee, Multan, Pakistan <sup>2</sup>Entomological Research Institute Faisalabad, Sub-station Multan, Pakistan \*Corresponding author`s email address: <u>noor.1272@yahoo.com</u>

(Received, 30<sup>th</sup> November 2024, Revised 08<sup>th</sup> January 2025, Published 31<sup>st</sup> January 2025)

**Abstract:** To meet the increasing demand for cotton and improve fibre quality, the development of high-yielding, early-maturing, and disease-resistant cultivars remains essential for sustainable cotton production in Pakistan. **Objective:** This study aimed to develop and evaluate a new cotton cultivar, Bt. Cyto-178, for its agronomic performance, fibre quality, and adaptability under diverse agroecological conditions in Pakistan. **Methods:** Bt. Cyto-178 was developed at the Cytogenetic Section of the Central Cotton Research Institute (CCRI), Multan, Pakistan, from a cross between (Neelum 121 × Exotic material) × SL-365/1 (Cyto-124) during the 2003–04 cotton season. Selection was conducted from the F<sub>2</sub> to F<sub>8</sub> generations based on phenotypic traits, yield potential, and fibre quality. The cultivar was tested for 12 years in CCRI research plots, farmers' fields, and multi-location National Coordinated Varietal Trials (NCVT) across Punjab, Sindh, and other cotton-growing regions. **Results:** Bt. Cyto-178 consistently outperformed existing commercial cultivars in both preliminary and advanced yield trials. It ranked 10th in national yield performance during the 2014–15 season and demonstrated superior traits including early maturity, high yield, and resistance to major diseases. The cultivar is especially well-suited for the agroecological conditions of Punjab. **Conclusion:** Bt. Cyto-178 is a robust, early-maturing, and high-yielding cotton cultivar with enhanced fibre quality and disease resistance. Approved by the Punjab Seed Council in 2020, it is recommended for general cultivation across cotton-growing regions of Pakistan.

Keywords: Cotton, Cultivar Development, Breeding, Seed Cotton Yield, Early Maturity, Fibre Quality

[*How to Cite:* Ashraf, F., Hayat, K., Imran, H.M., Akbar, M., Muhammad, N., Hameed, A., Aslam R, Ahmad, A., Mian MA, Adnan, M. Development of high yielding and early maturing cotton variety Cyto-178 with better adaptation to the climatic condition of Punjab. *Biol. Clin. Sci. Res. J.*, **2025**; 6(1): 168-172. doi: <u>https://doi.org/10.54112/bcsrj.v6i1.1522</u>]

# Introduction

White gold is the most critical fibre crop worldwide and the second crucial oilseed. As an oilseed and fibre crop, it is cultivated in almost 70 countries and contributes to the worldwide economy. It is a tropical and subtropical plant, and much of the crop is grown in Asia because four Asian countries, China, India, Pakistan, and Uzbekistan, produce approximately 68% of the world's cotton. Its role in GDP is 1.6% in Pakistan. In 2008-09, the average yield was 3963, 1569, 2115 and 1959 in China, India, Uzbekistan and Pakistan, respectively (Singh, 2011). So many farmers, labourers, local textiles, etc., depend on cotton (Razzaq et al., 2021), and breeders incessantly struggle to sort out different qualitative and quantitative traits that add to enhance seed cotton yield (Sharma et al., 2021; Ballester et al., 2021).

The current cotton production is low due to various production constraints, including the lack of high-yielding cotton cultivars, which are the major ones. Similarly, drought and heat are also everyday abiotic stresses during the cotton growing season, which results in a severe adverse impact on the crop growth, yield and quality of fibre (Areej et al., 2021; Abo Sen et al., 2022). Cotton is dreadfully sensitive to heat and drought stress, which results in a severe reduction in yield due to these stresses, a complex phenomenon that influences cotton crop physiology (Areej et al., 2021). It is also susceptible to diseases, particularly cotton leaf curling disease. The flowering and boll formation stage in cotton is the most crucial, and the stresses occurring during these stages undoubtedly seriously influence cotton growth, development and final production (Yehia & Hashash, 2019; Zhong et al., 2021; Zhu et al., 2018). This heat, drought, and disease stress influences the physiological processes and alters the rate of photosynthesis, transpiration, stomatal

conductance, carboxylation efficiency, and water use efficiency. Thus, even suitable cotton cultivars could be low-yielding under stress conditions (Qiu et al., 2020; Rajeev et al., 2018; Sultan et al, 2018). Mehdi et al., 2022, Montes et al., 2017, and Nidagundi et al., 2018 described that cotton cultivars developed in optimum conditions are not likely to sustain yield genotype-environment interaction, and selection is only fruitful in stress conditions.

Most cotton cultivars become susceptible to disease, heat, and drought stress. Thus, cultivating resistant and tolerant cultivars is a viable option to overcome these issues. Thus, there is always a need to develop cultivars resistant to biotic and abiotic stresses, ecologically suitable, environmentally friendly, and economically viable to sustain farmers' income and enhance their livelihood.

Bt-Cyto-178 has the edge over most cotton cultivars because of its short duration, high yield, and early maturity. This cultivar possesses enhanced genetic potency, contributed remarkably sound yield evaluation, and is thus best suitable for the existing growth conditions.

#### Methodology

Bt. Cyto-178 was obtained from the cross (Neelum 121 × Exotic material) × SL-365/1 (Cyto-124) during the crop season 2003-04. The  $F_1$  were grown from single plant progeny in a pedigree method in 2004-05. During crop season 2005-06, the F2 segregation population was planted, and the selection of desired plants was made through the pedigree selection method. Cultivar was assessed in different replicated trials for 8 years consisting of micro varietal trials, standard varietal trials, and zonal varietal trials at the research area of Central Cotton Research Institute, Multan, and farmers' fields, respectively, during the year 2011-12 to

2014-15. These experiments were conducted in RCBD, having three replications except zonal trials, which were unreplicated. Bt. For comparison, CIM-598 and MNH-886 were included as local checks in all these experiments.

variance technique suggested by Steel et al., 1997 using Statistix 8.1 software program.

#### Results

The line was then assessed for seed cotton yield, disease and heat tolerance, and other agronomic traits in national coordinated varietal trials (NCVT) across the country in 16 experimental locations during the 2013-14 and 2014-15 cotton crop seasons, respectively. Agronomic operations were performed according to standard recommendations for each location. After performing remarkably and achieving more seed cotton yield nationally, the Punjab Seed Council approved the line for cultivation in 2020 and named Bt. Cyto-178. The data recorded on seed cotton yield and other attributes were statistically analysed using the analysis of

The Punjab seed council recommended this newly developed cultivar in 2020 for general cultivation in Punjab. Important qualitative and quantitative attributes of Bt-Cyto-178 are: plants are tall and cylindrical with 0-4 monopodial branches and 8-12 sympodial branches, plant<sup>-1</sup>, having perfect boll opening (Table 1). The phenology of Cyto-179 depicted that it takes 43-49 days for the first flower to have an average boll weight of 3.8 g. It possesses excellent CLCV, heat and drought tolerance with excellent fibre attributes such as GOT (40.5%), staple length (28.2 mm), strength (107.6) and fineness (4.2 ug/inch) (Table 1).

| General characteristics       |                                                      | Seedling characteristics                 |                  |  |
|-------------------------------|------------------------------------------------------|------------------------------------------|------------------|--|
| Variety name                  | Bt-Cyto-178                                          | Seedling length (cm)                     | 6.8              |  |
| Specie name                   | Gossypium hirsutum L.                                | Seedling colour                          | Light Green      |  |
| Parentage                     | (Neelum 121 × Exotic material) × SL-365/1 (Cyto-124) | Foliage spot                             | Present          |  |
| Breeding method               | Hybridisation                                        | Leaf characteristics                     |                  |  |
| Growth habit                  | Semi Erect                                           | Foliage density                          | Intermediate     |  |
| Plant height                  | 145 cm                                               | Leaf colour                              | Light Green      |  |
| Plant shape                   | Cylindrical                                          | Leaf length                              | 11-13 cm         |  |
| Fruit branch type             | Sympodia (Short to medium)                           | Leaf width                               | 14-17 cm         |  |
| 1 <sup>st</sup> flower node   | 6-8                                                  | Petiole length                           | 6-8 cm           |  |
| Monopodia attitude            | Semi erect                                           | Leaf attitude                            | Semi erect       |  |
| Monopodia plant <sup>-1</sup> | 0-4                                                  | Leaf type                                | Normal           |  |
| Sympodia attitude             | Semi erect                                           | Leaf appearance                          | Flat             |  |
| Sympodia plant <sup>-1</sup>  | 29-32                                                | Leaf nectaries                           | Present          |  |
| Stigma pigmentation           | Normal                                               | Leaf hairiness                           | Hairy            |  |
| Stem tip hair                 | Hairy                                                | Boll characteristic                      |                  |  |
| Bud gossypol                  | Normal                                               | Boll opening                             | Good             |  |
| Flower characteristics        |                                                      | Boll weight (g) 2.8                      |                  |  |
| Days to first flowering       | 42-47                                                | Seed cotton yield (kg ha <sup>-1</sup> ) | 4120             |  |
| Flowering duration            | Long                                                 | Fibre characteristics                    |                  |  |
| Flower size                   | Long                                                 | Fibre colour                             | White            |  |
| Petal spot                    | Absent                                               | G.O.T.                                   | 39.4             |  |
| Nectaries                     | Present                                              | Staple length                            | 28.2             |  |
| Petal colour                  | Creamy                                               | Micronaire value                         | 4.5              |  |
| Pollen colour                 | Yellow                                               | Strength                                 | 103.6            |  |
| Stamen density                | Dense                                                | Uniformity index (%)                     | 85.2             |  |
| Calyx size                    | Medium                                               | Maturity ratio                           | 1.01             |  |
| Seed characteristics          |                                                      | Fibre length group                       | Medium Long      |  |
| Seed size                     | Bold                                                 | Resistance                               |                  |  |
| Seed length/width             | 8.2/4.7                                              | Lodging                                  | Medium resistant |  |
| Seed index                    | 7.4                                                  | Sucking                                  | Medium resistant |  |
| Seed coat color               | Brown                                                | Boll worms                               | Medium resistant |  |
| Seed fuzziness                | Semi fuzzy                                           |                                          |                  |  |
| Fuzz Color                    | White                                                |                                          |                  |  |

# Table 1. Botanic explanation of Bt-Cyto-179.

# Performance of Bt.Cyto-178 in Micro varietal trials, standard varietal trials, and zonal varietal trials

The micro varietal trial produced 4087 kg ha-1 seed cotton yield compared to the local check Bt. CIM-598, which produced a seed cotton yield of 2945 kg ha<sup>-1</sup>. Thus the candidate variety produced 27.94% more seed cotton yield than local check during the crop season 2013-14 (Table

2). Compared to local check Bt, the candidate line was assessed in standard varietal trials for two consecutive crop seasons, 2013-14 and 2014-15. CIM-598. It produced 4120 kg ha<sup>-1</sup> and 4191 kg ha<sup>-1</sup> seed cotton yield, which was 26.38% and 35.57% more compared to check during both crop seasons, respectively (Table 2). Compared to local check Bt, the candidate line was also assessed in zonal varietal trials for two

consecutive crop seasons, 2013-14 and 2014-15. CIM-598. It produced 3864.7 kg ha<sup>-1</sup> and 39505 kg ha<sup>-1</sup> seed cotton yield, 22.68% and 25.28% more than checked during both crop seasons, respectively (Table 2).

# Table 2. Seed cotton yield (kg ha<sup>-1</sup>) of Bt. Cyto-178 compared to standard checks in different yield trials from 2014-15 to 2016-17.

| Trial | Year    | Bt. Cyto-178 | Local check          | % increase |
|-------|---------|--------------|----------------------|------------|
| MVT   | 2012-13 | 4087         | (Bt. CIM-598) 2945   | 27.94      |
| VT-1  | 2013-14 | 4120         | (Bt. CIM-598) 3033   | 26.38      |
| VT-1  | 2014-15 | 4191         | (Bt. CIM-598) 2700   | 35.57      |
| ZVT   | 2013-14 | 3864.7       | (Bt. CIM-598) 2987.8 | 22.68      |
| ZVT   | 2014-15 | 3950.5       | (Bt. CIM-598) 2951.6 | 25.28      |
| NCVT  | 2014-15 | 2823         | (Bt. CIM-602) 2644   | 6.34       |
| NCVT  | 2015-16 | 2235         | (Bt. FH-142) 2196    | 1.75       |

# Performance of Bt. Cyto-178 in National Coordinated Varietal Trials (NCVT)

The NCVT data recorded during the 2014-15 and 2015-16 crop seasons revealed the incomparable performance of Bt—Cyto-178 across the country. NCVT (2014-15) ranked 10th in Pakistan by producing a seed cotton yield 2823 compared to the check, which was 2644 (Table 3). It

was observed to produce 2738 and 3226 kg ha<sup>-1</sup> seed cotton yield in Punjab and Sindh, respectively. Similarly, in the crop season 2015-16, it ranked 18th in NCVT and produced 2235 kg ha-1 seed cotton yield compared to local check, which produced 2098 kg ha<sup>-1</sup> (Table 4). Thus, it yielded 1.75% more seed cotton yields than the check.

# Table 3. Pooled seed cotton yield (kg ha<sup>-1</sup>) analysis of cotton cultivars included in NCVT during crop season 2014-15.

| Candidate variety | Punjab | Sindh | Pakistan |
|-------------------|--------|-------|----------|
| FH-Lalazar        | 3500   | 3579  | 3271     |
| Baghdadi          | 3538   | 3357  | 3220     |
| VH-327            | 3471   | 3347  | 3201     |
| CEMB-77           | 3209   | 3347  | 3072     |
| CIM-616           | 3238   | 3342  | 3055     |
| FH-142 (Std-2)    | 3058   | 3441  | 3028     |
| CEMB-66           | 3144   | 3133  | 2951     |
| CIM-622           | 2989   | 3053  | 2846     |
| BH-184            | 2863   | 3052  | 2825     |
| Cyto-178          | 2738   | 3226  | 2823     |
| MNH-988           | 2705   | 3137  | 2775     |
| Cyto-177          | 2782   | 3081  | 2767     |
| NIAB-874B         | 2754   | 3080  | 2755     |
| BH-185            | 2615   | 3123  | 2753     |
| SLH-8             | 2875   | 2921  | 2743     |
| IUB-13            | 2540   | 3008  | 2653     |
| VH-305            | 2684   | 2731  | 2644     |
| CIM-602 (Std-1)   | 2412   | 3135  | 2644     |
| IR-NIBGE-6        | 2476   | 2911  | 2587     |
| IR-NIBGE-7        | 2296   | 3106  | 2572     |
| FH-Noor           | 2635   | 2724  | 2563     |
| IUB-63            | 2178   | 3057  | 2525     |
| RH-647            | 2110   | 2844  | 2448     |
| TH-21/09          | 2119   | 2883  | 2421     |

Table 4. Pooled seed cotton yield (kg ha<sup>-1</sup>) analysis of cotton cultivars included in NCVT during crop season 2015-16.

| Candidate variety | Punjab | Sindh | Pakistan |
|-------------------|--------|-------|----------|
| VH-327            | 1927   | 3142  | 2525     |
| NIAB-878B         | 1934   | 2713  | 2475     |
| GH-Baghdadi       | 1773   | 3008  | 2448     |
| CIM-622           | 1707   | 3134  | 2438     |
| AGC-Nazeer-1      | 1778   | 3079  | 2436     |
| GH-Mubarak        | 1973   | 2598  | 2422     |
| Eagle-1           | 2097   | 2500  | 2387     |
| FH-326            | 1876   | 2699  | 2372     |
| VH-363            | 1846   | 2521  | 2364     |
| MNS-992           | 1831   | 2407  | 2332     |
| BZU-75            | 1903   | 2416  | 2331     |
| Saim-32           | 2148   | 2417  | 2322     |
| CEMB-77           | 1747   | 2642  | 2279     |

#### Biol. Clin. Sci. Res. J., Volume 6(1), 2025: 1522

*Ashraf et al.*, (2025)

| NIAB-874B        | 1688 | 2813 | 2269 |
|------------------|------|------|------|
| Sahara-120       | 1934 | 2454 | 2267 |
| CIM-602 (Std-1)  | 1551 | 2894 | 2244 |
| Zakriya-1        | 1721 | 2539 | 2243 |
| Cyto-178         | 1763 | 2767 | 2235 |
| Adan-11          | 1743 | 2631 | 2213 |
| FH-142 (Std-2)   | 1492 | 2628 | 2196 |
| Suncrop hybrid-2 | 1814 | 1980 | 2187 |
| Cyto-179         | 1703 | 2350 | 2154 |
| Sahara-150       | 1637 | 2679 | 2153 |
| IR-NIBGE-7       | 1648 | 2617 | 2121 |
| Crystal-1        | 1226 | 3007 | 2117 |
| IUB-63           | 1280 | 2624 | 2078 |
| QM-IUB-65        | 1407 | 2428 | 2072 |

#### Fibre quality

The mean values of the fibre quality attributes in 178 different evaluation trials showed that it possesses remarkably outstanding fibre attributes. The fibre length was more than 28 mm in micro varietal, varietal, zonal,

and national varietal trails. It also depicted excellent fibre strength, micronaire value, and uniformity in all these trials, above the minimum recommended standard values (Table 5).

| Table 5. Fibre | quality attributes o | f Bt. Cyto-178 compare | d to standard checks in differ | ent yield trails from 2013-13 to 2014-15. |
|----------------|----------------------|------------------------|--------------------------------|-------------------------------------------|
|                |                      |                        |                                |                                           |

| Trial | Year    | Bt. Cyto-178      |                |     |            |
|-------|---------|-------------------|----------------|-----|------------|
|       |         | Fibre length (mm) | Fibre strength | MIC | Uniformity |
| MVT   | 2012-13 | 27.3              | 104.6          | 4.7 | 48.6       |
| VT-1  | 2013-14 | 28.7              | 105.2          | 4.8 | 48.7       |
| VT-1  | 2014-15 | 28.2              | 98.7           | 4.6 | 49.1       |
| ZVT   | 2013-14 | 28.2              | 101.3          | 4.7 | 48.1       |
| ZVT   | 2014-15 | 28.3              | 103.2          | 4.6 | 48.8       |
| NCVT  | 2014-15 | 27.5              | 100.7          | 4.7 | 49.3       |
| NCVT  | 2015-16 | 27.2              | 107.0          | 4.7 | 49.0       |

#### **Production technology**

In order to attain the maximum production, the following production technology for Bt-Cyto-178 is recommended (Table 6): 2-3 deep ploughs followed by a cultivator and then a rotavator to pulverise and prepare good root zone and soil conservation. Evil sowing is recommended to attain maximum seed cotton yield because it facilitates the maintenance of plant population, weed eradication, and efficient use of fertiliser and conserves

irrigation water. The Fertiliser application consists of 1-1.5 bags DAP and 2-3 bags urea, and it must be applied before the end of August. First, irrigation must be done after sowing, followed by frequent irrigation on the fourth or fifth day. Then, three more irrigations with 15-day intervals are required, while further irrigations depend on weather conditions and soil structure.

| Tabla 6 I  | Perommended | nroduction | technology | for | cultivation | of Rt_C | vto_178          |
|------------|-------------|------------|------------|-----|-------------|---------|------------------|
| Table 0. I | Recommended | production | technology | IOU | culuvation  | OI DI-U | <i>vuo-1/0</i> . |

| there of Recommended Production technology for californian of Dr Cyto 1100 |                                                                                 |  |  |
|----------------------------------------------------------------------------|---------------------------------------------------------------------------------|--|--|
| Sowing time                                                                | March 15 to June 15                                                             |  |  |
| Seed rate                                                                  |                                                                                 |  |  |
| Drill sowing                                                               | 8-10 kg acre <sup>-1</sup>                                                      |  |  |
| Ridge sowing                                                               | 06-08 g acre <sup>-1</sup>                                                      |  |  |
| Plant spacing                                                              | 9-12" 1ft                                                                       |  |  |
| Bad spacing                                                                | 2.5 ft                                                                          |  |  |
| Irrigations                                                                | 6-7                                                                             |  |  |
| 1 <sup>st</sup> irrigation                                                 | 35-40 days after sowing                                                         |  |  |
| Subsequent irrigations                                                     | 15 days interval                                                                |  |  |
| Last irrigation                                                            | 1 <sup>st</sup> week of October                                                 |  |  |
| Fertiliser                                                                 | DAP 1-1.5 bags at sowing and 2-3 bags urea with split irrigations, and the last |  |  |
|                                                                            | split dose of urea must be applied from 15 to 25th August.                      |  |  |
| Plant protection                                                           | As per insect pest infestation                                                  |  |  |

#### Discussion

Cultivar development with maximum yield potential and improved adaptability is needed because less seed availability is accredited to the non-availability of pure seeds of better-quality cultivars (Areej et al., 2021). The evolution of high-yielding genotypes can significantly enhance cotton production (Arshad et al., 2020). Approximately 25-40% improvement in yield can be achieved by breeding new high-yielding resistant cultivars (Arshad et al., 2020). In Pakistan, a handful of shortduration and tolerant cultivars were developed, but this was in the past, and from the last decade, the short-duration potential has not been utilised and heat-resistant cultivars for the development of the community. In such circumstances, Bt-Cyto-178 is a blessing because it is a short-duration, high-yielding, heat and drought-resistant cultivar. Bt-Cyto-178 has many outstanding attributes which distinguish it from the existing approved cultivars.

Based on the consolidated results of nationally coordinated varietal trials and technology tests from highly alleged bio-labs, Cyto-178 was confirmed as a competitive and favourable Bt cultivar of maximum yield potential and sturdy adaptability to heat and drought conditions. This

# Biol. Clin. Sci. Res. J., Volume 6(1), 2025: 1522

cultivar can resolve all-out challenges in the area of good crop production. The introduction of Bt-Cyto-178 is the source of maintenance and enrichment of germplasm for which a filial population study was carried out.

### Conclusion

The development of Bt-Cyto-178 is the pinnacle of achievement in cultivar development. Nothing can be compared with this cultivar's short duration, high yielding, and heat resistance under the agro-ecological conditions of Punjab, particularly across the country. Furthermore, its resistance to cotton leaf curling disease makes it highly suitable for growing throughout the country. This will not only diversify the genetic base of the area regarding cotton cultivars but also enhance the livelihood status of the farming community by having short duration, high yielding, and being best tolerant to high temperatures and under drought conditions.

#### Declarations

# Data Availability statement

All data generated or analysed during the study are included in the manuscript.

Ethics approval and consent to participate Approved by the department concerned. Consent for publication Approved Funding Not applicable

# **Conflict of interest**

The authors declared the absence of a conflict of interest.

### **Author Contribution**

All authors contributed equally

All authors reviewed the results and approved the final version of the manuscript. They are also accountable for the integrity of the study.

# References

- Arshad, J., S. J. Khan & K. Ullah. (2020). Genetic diversity for cell membrane thermostability, yield and quality attributes in cotton (Gossypium hirsutum L.). Genet. Resour. Crop Evolution. 67: 1405–1414.
- Abo Sen, E. Z. F. et al. Evaluation of genetic behaviour of some Egyptian Cotton genotypes for tolerance to water stress conditions. Saudi J. Biol. Sci. 29, 1611–1617. https://doi.org/10.1016/j.sjbs.2021.11.001 (2022).
- Areej, J., Azhar, F. M., Khan, I. A., Amir, S. & Azhar, M. T. Drought stress modified genetic components and combining ability of cotton genotypes (2021).
- Ballester, C., Hornbuckle, J., Brinkhoff, J., Quayle, W.C., 2021. Effects of three irrigation frequencies and nitrogen rates on lint yield, nitrogen use efficiency and cotton fibre quality under furrow irrigation. Agric. Water Manag. 248, 106783
- Yehia, W. M. B. & El-Hashash, E. F. Combining ability effects and heterosis estimates through line x tester analysis for yield, yield components and fiber traits in Egyptian cotton. J. Agron. Technol. Eng. Manag. 2(2), 248–262 (2019).
- Zhong, W. et al. Development and characterisation of SSR markers in the Gossypium Barbadense Genome (2021).

- Zhu, Q.-H. et al. Genetic dissection of the fuzzless seed trait in Gossypium barbadense. J. Exp. Bot. 69, 997–1009. https://doi.org/10.1093/jxb/erx459 (2018).
- Qiu, T. et al. GbAt11 gene cloned from Gossypium barbadense mediates resistance to Verticillium wilt in Gossypium hirsutum. J. Cotton Res. 3, 1–10. https://doi.org/10.1186/s42397-020-00047-3 (2020).
- Rajeev, S., Patil, S., Maralappanavar, M. & Pothula, S. Studies on recombinational variability for combining ability or seed cotton yield and contributing traits in F4 Hirsutum lines against barabdense testers 4040–4057 (2018).
- Sultan, M. S., Abdel-Moneam, M. A., El-Mansy, Y. M. & El-Morshidy, H. S. Estimating heterosis and combining ability for some Egyptian cotton genotypes using line x tester mating design. J. Plant Prod. Mansoura Univ. 9(12), 1121–1127 (2018).
- Mehdi, M., Raza, M. & Azeem, M. 311-321 (2022).
- Montes, E. et al. Assessment of gene flow between Gossypium hirsutum and G. herbaceum: Evidence of unreduced gametes in the diploid progenitor. G3 (Bethesda). 7(7), 2185–2193. https://doi.org/10.1534/g3.117.041509 (2017).
- Nidagundi, J., Diwan, J., Ac, H. & Hadimani, A. Combining ability studies in cotton (Gossypium barbadense L.). J. pharmacogn. phytochem. 7(1), 638–642 (2018).
- Singh, J. Final report of Impact Assessment IPM Cotton project for boosting diversification process in Punjab. 2011. https://www.researchgate.net/publication/2 66082386.
- Razzaq, A., Zafar, M.M., Arfan, A., Hafeez, A., Batool, W., Yuzhen, S., Wankui, G., Youlu, Y., 2021. Cotton germplasm improvement and progress in Pakistan. J. Cotton Res. 4, 1–14.
- Sharma, A., Deepa, R., Sankar, S., Pryor, M., Stewart, B., Johnson, E., Anandhi, A., 2021. Use of growing degree indicator for developing adaptive responses: a case study of cotton in Florida. Ecol. Ind. 124, 107383



**Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License, <u>http://creativecommons.org/licen\_ses/by/4.0/</u>. © The Author(s) 2025