Biological and Clinical Sciences Research Journal ISSN: 2708-2261 www.bcsrj.com DOI: https://doi.org/10.54112/bcsrj.v2022i1.119 Biol. Clin. Sci. Res. J., Volume, 2022: 119 Original Research Article

KHANPUR CANOLA (KN-279); NEWLY APPROVED LONG SILIQUED, BOLD SEEDED, HIGH YIELDING WITH IMPROVED QUALITY, DOUBLE ZERO (00) VARIETY OF RAPESEED (*BRASSICA NAPUS* L.)

AHMAD I¹, SALEEM S¹, GHAZALI HMZU¹, MASOOD SA²*, JAMIL M³, FAHEEM U⁴, HUSSAIN F^{1,5}

¹Oilseeds Research Station, Khanpur, Pakistan ²Cotton Research Institute, Khanpur, Pakistan ³Cotton Research Station, Vehari, Pakistan ⁴Entomological Research Sub-station, Multan, Pakistan ⁵Sugarcane Research Station, Khanpur, Pakistan Corresponding author email address: <u>s.ahtisham01@gmail.com</u>, 03327338445

(Received, 11th May 2021, Revised 19th September 2022, Published 30th September 2022)

Abstract: The promising variety "Khanpur Canola" (KN-279) is an outcome of hybridization (KN-120 × Shiralli) during 2006-07 and chosen through Pedigree strategy for determination. Homozygous descendants were built in 2014-15 for yield assessment. Its exhibition was assessed in on station, micro yield preliminaries and national level Uniform Rapeseed Yield Preliminary trials. It has demonstrated its worth in all yield preliminaries and its exhibition is superior to every one of the current developed selections. Its greatest yield of 3400 kg/ha was accomplished in NURYT 2018-19. It produced 22% higher yield in micro yield trials against standard variety during 2016-17. It surpassed the check (Faisal Canola) with 21% better return in National Uniform Rapeseed Yield trials in 2017-18. Similarly, in NURYT 2018-19 KN-279 gave 19% higher seed yield than the check hybrid Hyola 401.Khanpur canola is a striking cultivated new endorsed variety (assortment) having great qualities and reasonable for edible oil creation. It has the erucic acid; 4.04 % and Glucosinolates; 17.20 μ mole/g oil and it gives 40-46 % edible oil content on extraction. Agronomic examinations uncovered that this assortment needs no unique creation innovation bundle and fit in a superior manner with the current agronomic practices. The competitor assortment additionally showed most extreme aphid resistance when contrasted with others following normal agronomical practicesthe actually agronomic practices. It is reasonable for climatic states of both inundated and rain-fed region of the Punjab.

Keywords: Erucic acid, Glucosinolates, Long silique, double zero, rapeseed, Alternaria Blight, edible oil

Introduction

Edible oil is indispensable piece of human eating routine and contributes crucial job for legitimate developmental events and guideline of various body capabilities. Oilseed crops are the main source of edible oil. Pakistan is deficient in edible oil and spending huge foreign exchange on its import. The import bill of edible oil and oilseeds has crossed Rs. 475 billion (3.068 billion US dollars) during 2019-20. The local edible oil production is only 13% as compared to the import (i.e. 87%) hardly 1/3rd of our requirements. The gap among its synthesis and utilization of edible oil is as yet expanding because of expansion in populace, expansion in per capita utilization and slow expansion in nearby creation of oilseed crops (Economic Survey of Pakistan, 2020-21). Crops like Rapes and Mustard are core source of edible oil and traditionally grown as oil-seed crop in the country. Rapeseed is a gorgeous cradle of oil and protein. It contains 40-44 % good quality oil and its meal has 38-40 % protein that has a complete profile of amino acids including lysine, methionine and cystine. Rapeseed and Mustard seed having Erucic acid less than 5% and Glucosinolates less than 30 μ moles/g in oil free meal is called Double Zero (00) varieties (Aftab*et al.* 2021). The oil from Rapeseed (00) is safe for human consumption and meal is suitable for animals and birds especially for poultry industry. Pakistan produced 38 thousand tonnes of Canola seed from an area of 68 thousand acres during 2019-20 (Mahmood *et al.* 2019). During 2019-20, more than 30,000 acres of Canola crop has been cultivated in the Punjab (Economic Survey of Pakistan, 2019-20).

This is need of time to develop new double zero rapeseed/mustard varieties because the hybrids grown in Pakistan are direct introduction and mostly possessing less adaptability in local climatic conditions. The price of these hybrids is very high compared with price of locally developed rapeseed/mustard varieties. The exotic hybrids are

[Citation: Ahmad, I., Saleem, S., Ghazali, H.M.Z.U., Masood, S.A., Jamil, M., Faheem, U., Hussain, F. (2022). Khanpur canola (KN-279); newly approved long siliqued, bold seeded higher yielding with improved quality, double zer0 (00) variety of rapeseed (*Brassica napus* L.). *Biol. Clin. Sci. Res. J.*, **2022**: *119*. doi: <u>https://doi.org/10.54112/bcsrj.v2022i1.119</u>]

Check for

undates

also vulnerable to aphid attack due to longer vegetative phase. Traditionally grown varieties of rapeseed/ mustard have high Erucic acid and Glucosinolates content. Considering oilseeds requirement, it is necessary to develop new high yielding rapeseed/mustard varieties having good oil that can replace the existing quality rapeseed/mustard varieties. The Oil-seeds Research Station, Khanpur is building enthusiastic efforts to advance and bring together new Rapeseed (00) varieties in at national level in Pakistan. The presentation of very first double zero rapeseed variety of this Station "KHANPUR CANOLA" (KN-279) will surely assist the cultivators with expanding quality edible-oil creation which will at last diminish the import bill. It would at last give assistance in diminishing the hole between the creation and utilization of good quality consumable oil.

Methodological development Name of the variety

The name proposed is "KHANPUR CANOLA" subject to its approval.

Parentage/Pedigree

Shiralli a high yielding line with good quality oil and well adapted to Pakistani climatic conditions and KN-120 were sown at field of Oil-seeds Research Station in Khanpur. On flowering, KN-120 was used **Species:** *Brassica napus* **L**.

Breeding History

as female in grossing with Shiralli. The F1 plants were developed and selfed at blossoming. From F2 stage, 135 single plants with early development and great plant power were reaped independently. 78 out of these 135 single plant choices were utilized to develop F3 descendant's lines. 49 plants were reaped independently from the chosen progeny-rows based on plant wellbeing and better return (yield). Out of these chosen plants 34 single plants were additionally developed to have plant to descendant's progeny rows of F4. Then, 27 beneficial single plants were reaped from the chose progeny rows. The F5 containing 27 plants to push offspring were developed consequently 21 descendants columns were chosen to develop F6. The 11 single plants were additionally chosen to develop F7. Eleven predominant lines of F7 were chosen. Based on quality examination 3 lines were chosen for assessment in Station yield-trials. The isolating material F2 to F7 was kept up with in disconnection passages to stay away from any unfamiliar pollen pollution. The best performing lines were assessed in Micro Yield-trials. After assessment in these Micro Yield trails, KN-279 was assessed in National Uniform Rapeseed Yield Trials for sequential two years 2017-18 and 2018-19.

2006-07 (Initial Cross)	$KN-120 \times Shiralli$
2007-08 (F ₁)	Single plants were sown and self-pollinated at following.
2000.00./E.)	
2008-09 (F ₂)	F ₂ generation was grown 135 single plants were selected and each plant was harvested separately.
2009-10 (F ₃)	78 progeny rows were grown
	49 desirable single plants were reaped from selected lines.
2010-11 (F ₄)	34 plant to progeny rows were grown
	27 anticipated single plants were picked from selected-rows and Erucic acid and Glucosinolates analysis was performed
2011-12 (F ₅)	27 plant-progeny rows were planted
	▼ 21 single plants were selected
2012-13 (F ₆)	21-plant-to-progeny rows were sown
	11 single plants were harvested followed by Analysis of Erucic acid & Glucosinolates of
2012 14 (E)	these plants
2013-14 (F ₇)	II plant to progeny rows were grown
	8 superior rows were selected. Erucic acid &
2014-15 to 2015-16	3 selected lines were evaluated in station yield trial
2011 12 10 2013 10	Erucic acid & Glucosinolates contents were determined at the end.

[Citation: Ahmad, I., Saleem, S., Ghazali, H.M.Z.U., Masood, S.A., Jamil, M., Faheem, U., Hussain, F. (2022). Khanpur canola (KN-279); newly approved long siliqued, bold seeded higher yielding with improved quality, double zer0 (00) variety of rapeseed (*Brassica napus* L.). *Biol. Clin. Sci. Res. J.*, **2022**: *119*. doi: https://doi.org/10.54112/bcsrj.v2022i1.119]

Variety	Seed-Yield (kg/ha)							
	PYT (2014-15)	AYT (2015-16)	Avg.	% increase				
KN-279	2654	2840	2747					
Punjab Canola (C)	2613	-	2613	5%				
Faisal Canola(C)	-	1872	1872	46%				

The above data of on-station yield trials clearly reflected that KN-279 produced 5% and 46% in PYT and AYT respectively more seed yield than check varieties.

Out Station Yield Trials

Sr.	Locations		Seed-Yield (kg/ha)
No.	Locations	KN-279	Faisal Canola (C)	RohiSarson (C)
1	Faisalabad	1963	1407	1333
2	Bahawalnagar	1636	1667	1667
3	Bahawalpur	2519	1852	1804
4	Gujranwala	2589	2007	1796
5	Khanpur	2346	1512	1713
6	Chakwal	432	519	456
7	Karor	1718	1905	1754
8	Piplan	1528	1164	1713
	Average	1841	1504	1529
	% increase		22%	

The average seed yield of candidate variety KN-279 at eight locations, has shown 22% increase in yield than Faisal Canola as presented in above table.

Table-3 (i)-Yield performance of KN-279 in NURYT, 201

Variety/ Lines	Seed Yield (kg/ha)												
	NARC	BARI.	ORI.F	RARI	Pioneer	ORS	BARS	AZR	AZRI	NIFA	ARI	ARI	Mean
	.Isd	Chk	sd	.Bwp	Sahiwal	Kpur	DI-	C	Bhaka		T-jam	Quett	
							Khan		r			a	
KN-279	2782	562	2567	3400	2911	1315	767	2831	2207	2289	1423	760	1985
Hyola-401(C)	3051	544	2354	2644	2306	1074	624	2380	1404	3053	1228	865	1794
F. Canola (C)	2543	679	1991	2489	2156	1259	470	2446	2111	2042	1234	687	1676
10 % increased of KN-279 than Hyloa-401(C) and 18 % increased of KN-279 than Faisal Canola (C)													

Table-3 (ii) Complete for reference- Yield performance of KN-279 in NURYT, 2017-18 in Pakistan														
Rank	Entry/Name	NARC.	BARI	ORI.	RARI	Pioneer	ORS	BARS	AZRC	AZRI	NIFA	ARI	ARI	Mean
		Isd	Chk	Fsd	Bwp	Sahiwal	Kpur	DI-		Bhakar		T-jam	Quetta	
								Khan						
1	KN-279	2782	562	2567	3400	2911	1315	767	2831	2207	2289	1423	760	1985
2	KN-294	2580	642	3019	3278	3328	889	567	2395	2170	2045	1828	483	1935
3	MUN-1	2582	623	2315	2978	3289	1167	681	2479	2756	2282	845	1042	1920
4	HC-021C	3189	612	2663	2892	2628	926	499	1876	1804	3516	953	1196	1896
5	WS-520	3242	446	1880	1850	2878	781	640	3021	3367	2608	906	1116	1895
6	CHS-2	3311	975	2428	2389	2633	1148	681	2795	2111	2476	905	838	1891

[Citation: Ahmad, I., Saleem, S., Ghazali, H.M.Z.U., Masood, S.A., Jamil, M., Faheem, U., Hussain, F. (2022). Khanpur canola (KN-279); newly approved long siliqued, bold seeded higher yielding with improved quality, double zer0 (00) variety of rapeseed (*Brassica napus* L.). *Biol. Clin. Sci. Res. J.*, **2022**: *119*. doi: https://doi.org/10.54112/bcsrj.v2022i1.119]

7	RR-41-4	2801	633	2274	2811	3200	1222	711	2343	2431	2312	1419	487	1887
8	RBN-13028	2851	753	2969	2661	2711	1444	770	1994	1944	2236	1265	696	1881
9	011-K-16-3	3203	489	2374	3228	2522	1019	631	2188	2074	2536	1376	824	1872
10	Kingola	3026	761	2294	2100	2028	796	499	2807	3067	2925	1136	511	1829
11	Hyola-401(Std.)	3051	544	2354	2644	2306	1074	624	2380	1404	3053	1228	865	1794
12	CHS-9	2759	839	2480	2006	2467	963	686	2410	1915	2779	928	644	1740
13	Chakwal Sarson	2213	508	2174	3333	2544	722	358	1922	2344	2060	1756	888	1735
14	MUN-2	2537	646	2430	2617	2817	1167	710	1932	2000	2231	1019	635	1728
15	HC-022B	2458	637	2669	2283	2761	722	444	1909	1684	2982	1150	766	1705
16	CHS-16	2674	569	1817	2311	2778	981	458	2359	2067	2127	1208	874	1685
17	14CBN-009	2390	609	2100	3378	3133	1204	762	1842	2037	1027	1067	653	1684
18	F. Canola (C)	2543	679	1991	2489	2156	1259	470	2446	2111	2042	1234	687	1676
19	RBN-13029	2498	614	2039	2122	2483	1296	564	2380	1522	2030	1385	813	1662
20	MUN-3	2532	557	2043	1739	3206	1056	628	1934	1922	1946	886	1010	1622
21	14CBN-001	2428	499	2215	2047	2583	1185	435	2099	1356	1508	1289	846	1541
22	MUN-4	2528	744	1731	1556	2172	1148	478	1900	1859	2016	1025	569	1477

Table-4 (i)-Yield performance of KN-279 in NURYT, 2018-19 in Pakistan

Seed Yield in kg/ha												
Variety/ Lines	NARC	BARS	ORS,	NIA,	NIFA	RARI,	BARI,	AZRC,	ORI,	ARI,	AZRI,	Mean
F-Jang Kpur T-Jam B-pur Chk DIK FSD T-Jam Bhakar												
KN-279	3083	788	1056	236	2108	1555	1976	2801	2259	922	844	1603
Hyloa-401 (C) 1825 625 1370 245 2498 1250 1192 1888 2407 961 927 1381												
16 % increased of KN-279 than Hyloa-401(C)												

	Table-4 (ii) Complete for reference- Yield performance of KN-279 in NURYT, 2018-19 in Pakistan												
Rank	De-code	NAR	BAR	ORS	NIĀ,	NIFA,	RARI,	BARI	AZRC	ORI,	ARI,	AZRI,	Mean
No		С	S F-	,	T-Jam		B-pur	, Chk	, DIK	FSD	T-Jam	Bhakar	
			Jang	Kpu									
				r									
7	RBN-13016	2698	708	1574	378	3273	1695	2155	1883	3141	1797	1476	1889
3	RR-8-1	2845	753	1852	326	2914	1555	1665	2689	3204	1692	1191	1881
1	WS-520	2501	809	1444	290	3320	1278	2834	2512	3056	1067	813	1811
11	CHS-9	2760	663	1315	275	3746	1055	1808	2274	3185	1336	1059	1768
5	16147	2175	747	1444	319	2857	1722	1802	2538	2704	1751	944	1727
9	RM 193-1	2852	670	1407	421	2987	1705	1580	2273	2644	1520	969	1693
8	KN-294	2526	688	1204	404	3320	1483	1553	2355	2833	1143	983	1681
17	RBN-13017	2579	615	1444	232	3320	1472	1993	2047	3026	683	969	1671
4	KN-309	2817	753	1352	454	2764	1472	1631	2616	2715	862	934	1670
16	CHS-2	2889	622	1259	328	3540	1138	1881	1698	2585	1363	910	1656
13	S. Canola (C)	2741	660	1519	282	2781	1222	2052	1802	2667	1117	1045	1626
6	RR-14-4	2571	719	1093	489	2441	1417	2229	2183	2378	1143	1045	1610
19	Kingola-3	3186	615	741	302	3673	833	2158	1913	2352	1076	830	1607
2	KN-279	3083	788	1056	236	2108	1555	1976	2801	2259	922	844	1603
20	14CBN009	2135	615	1315	283	3107	1055	2035	2063	2259	1389	1087	1577
12	ZCA-13	2222	660	1333	297	2654	1295	2128	1910	2733	939	837	1546
23	27902	2671	583	852	486	3197	895	1778	2174	2407	1217	653	1538
18	CHS-30	2780	615	1130	228	3413	1055	181	1474	2381	1103	774	1526
10	CHS-26	2584	667	778	529	2338	888	1885	2473	2600	1158	868	1524
22	C-1	3009	594	1167	352	2431	888	1458	2276	2407	988	972	1494
24	CHS-16	2540	517	778	323	2930	888	1559	2274	2385	814	878	1444
15	Hyloa-401 (C)	1825	625	1370	245	2498	1250	1192	1888	2407	961	927	1381
21	1720	2328	597	859	436	1299	1000	1631	2563	2300	1036	1208	1374
14	24225	2538	625	870	277	2624	1083	1485	1750	2074	611	1156	1372
Mean		2619	663	1215	341	2897	1229	1846	2183	2602	1154	974	1611
	Quality Chara	cteristic	s				pron	nising stra	ain KN-2	79 has t	he erucic	corrosive	
	A striking	cultivate	ed new	line 1	having g	reat	4.04	% and G	lucosinol	ates 17.2	20 μ mole	g oil free	
	qualities, rea	sonable	for edi	ble-oil	creation.	The	dinn	er and it h	nas 40-46	% consu	imable/ed	ible oil.	

Table-5-Qualitative analysis of promising strain										
Tests	Oleic acid Linoleic acid% alpha-Linolenic acid% Erucic Acid% Glucosinolates									
	(ʊ-9)%	(µmole/g oil free meal)								
KN-279	52.74	20.64	9.27	4.04	17.20					

[Citation: Ahmad, I., Saleem, S., Ghazali, H.M.Z.U., Masood, S.A., Jamil, M., Faheem, U., Hussain, F. (2022). Khanpur canola (KN-279); newly approved long siliqued, bold seeded higher yielding with improved quality, double zer0 (00) variety of rapeseed (*Brassica napus* L.). *Biol. Clin. Sci. Res. J.*, **2022**: *119*. doi: <u>https://doi.org/10.54112/bcsrj.v2022i1.119</u>]

Faisal C	anola (C)	56.73	18.05	8.63	2.81	29.53
Super Ca	anola (C)	61.09	19.09	8.57	2.63	28.20
Canola (Dil Standards*	50-66	16-30	6-14	< 5	< 30
*Refei	rences					
1. Cod	lex Alimentariou	us Commission	n, Joint FAO/WHO	FAT & oil Standard	s, United Nations, UI	Κ.
2. Aus	stralian oilseeds	federation inc	orporated, quality s	tandards, 2015-16.		
Spot I	Examination			DUS Studies		
Spot	examination	committee	on 23-02-2021	DUS Studies	has been complete	d during the years
evalua	ted this strain.	The Khanpur	canola (KJ-279)	2018-19 and	2019-20	
was a	pproved by Exp	perts Sub-com	mittee in its 81 st	Recommende	ed Area for Cultivat	ted
meetir	ig and recomme	ended for gene	eral cultivation all	Whole Punjal).	
over P	unjab for edible	oil production	n.	-		
BNS/I	Pre Basic and B	asic Seed Av	ailability			
		S. No.	Organization/In	stitute	Seed Availability]
	1.		Oilseeds Researc	h Station, Khanpur.	200 kg	
Just	tification for A	oproval		• Tole	rant against diseases	Alternaria blight
•	KN-279 is a l	high vielding	long silique bold	and	White rust)	(i iiteiliaita oligiit
	seeded and e	arly maturing	00 strain	• Max	imum tolerance again	nst Aphid
•	Siliques are l	onger than Su	per Canola	Witax	innum toterance again	ist Aprild
	Good quality	oil and meal	per Calibia.			
•		TANICAL DE	SCRIPTION AND	ОТНЕВ СНАВАСТЕ	RISTICS OF KN 270	1
11	NAME OF V	ARIETY	SOUTH HUN AND	Khannur Canola	AND I LO UP NIV-279	
1.2	PREVIOUS	NAME		KN-279		
1.3	CROP			Rapeseed		
1.4	BOTANICA	L NAME		Brassica napus L.		
1.5	MAIN USE			Edible oil		
1.6	VARIETY C	OMPARED		Rohisarson		
1.7	PARENTAG	E		KN-120 × Shiralli		
1.8	PEDIGREE			ORS-2023-3035-4018	-5009-6005-bulk-(KN	-279)
2.1	BREED. CEI	NTRE		Oilseeds Research St	ation, Khanpur.	
2.2	BREEDER (S)		Muhammad Aslam N	ladeem	
				Idrees Ahmed		
				Saira Saleem		
	ALLIED DIS	SCIPLINES		Dr. Hafiz Zia Ullah k	Chan	
22	A DDI JC ANT	۲		Dr. Fida Hussain		
2.5	APPLICAN I MAINITAINI	7 D		Kapeseed Botanist		
2.4		ZK DTATION		Invigoted and Dainfo	d areas of Duniah	
2.5		ORIGIN		Dolziston	u areas or r unjab	
2.0	INSTT/ ORC	ANIZATION		Oilseeds Research St	ation. Khannur	
3.1	MATURITY	DAYS		152-167 days		
3.2	MATURITY	DURATION		Medium		
3.3	CROP SEAS	ON		Rabi		
3.4	SOWING TI	ME		1st fortnight of Octob	ber	
EDLING	CHARACTERI	STICS		~		
4.1	GROWTH H	ABIT		Erect		
4.2	SDL ANTHO	DCYAN		Medium to Strong		
ANT CH	ARACTERISTI	CS				
5.1	PLANT HEI	GHT (cm)		175 – 215		
5.2	PLANT TYP	'E ADIT		Indeterminate		
5.3	GROWTH H	ABII		Indeterminate		
3.4	PLANI COL	NUK		Dark green		
				Dark groon		
0.1 6 2	LEAF COLU I EAE ATTT	TIDE		Dark green		
0.2 6.2		UDE		Seini Ereci		
0.3 6.4	DETIOLE D	\SE		Broad		
6.5		NGTH (cm)		19_24		
6.5	IFAFIOR	NG		17-27 Deenly lohed		
67	LEAL LODI			Medium		
6.8	TERMINAL	SEGM		Large		
69	ΙΕΔΕΗΔΙΡ	S		Absent		
11.7				/ • · · / · · · · · · · · · · · · · · ·		

[Citation: Ahmad, I., Saleem, S., Ghazali, H.M.Z.U., Masood, S.A., Jamil, M., Faheem, U., Hussain, F. (2022). Khanpur canola (KN-279); newly approved long siliqued, bold seeded higher yielding with improved quality, double zer0 (00) variety of rapeseed (*Brassica napus* L.). *Biol. Clin. Sci. Res. J.*, **2022**: *119*. doi: <u>https://doi.org/10.54112/bcsrj.v2022i1.119</u>]

6.10	LF AURICLES	Absent
6.11	LEAF ANTHOCY	Absent
6.12	LF ATTACHMENT	Stalked
STEM CHAR	ACTERISTICS	
7.1	STEM SHAPE	Roundish
7.2	STEM THICKNESS (mm)	21-24
7.3	STEM STIFFNESS	Stiff
7.4	STEM PITH	Thick
7.5	RAMIFICATION	
FLOWER CH	ARACTERISTICS	
8.1	DAYS TO FLOWERING	74-79 Days
8.2	EARLIER THAN	Faisal Canola
8.3	FLO'NG DURATION	Long
8.4	PETAL COLOUR	Yellow
8.5	ANTHER DOTTING	Absent
8.6	POLLINATION	Self
SILIQUE CHA	ARACTERISTICS	
9.1	SILIQUE SHAPE	Long
9.2	SILIQUE ANTHOCYAN	Absent
9.3	SILIQUE ATTITUDE	Horizontal
9.4	BEAK SHAPE	Conical
9.5	SHATTERING	Medium
SEED CHARA	ACTERISTICS	
10.1	SEED COLOUR	Dark Black
10.2	SEED SIZE	Medium
10.3	RETICULATION	Absent
10.4	GLUCOSINOLATES	17.2 μ m/g oil free meal.
10.5	ERUCIC ACID%	4.04
10.6	MEAL PROTEIN	21-25
10.7	000 SEED WEIGHT (g)	4.7
10.8	AVERAGE YIELD	2350
10.9	YIELD POTENTIAL	3244
10.10	OIL %	43-46
RESISTANT	го	
11.1	LODGING	Resistant
11.2	BLACK LEG	Resistant
11.3	MILDEW	Tolerant
11.4	APHIDS	Resistant
Distinguish cha	aracters	

Early maturity, long Silique size and resistant to Aphid attack

Conflict of interest

The authors declared absence of conflict of interest References

- Aftab M., Mahmood T., Mustafa H.S.B. Prospect of Oilseed Crops in Pakistan, Directorate of Oilseeds, AyubAgric. Res. Inst. Faisalabad, Pakistan. 2021;06.
- Anonymous. 2019. Economic Survey of Pakistan. 2019-20. Ministry of Finance, Government of Pakistan.
- Anonymous. 2020. Economic Survey of Pakistan. 2020-21. Ministry of Finance, Government of Pakistan.
- Bibi T., Mustafa H.S.B., Mahmood T., Hameed A. and Ali Q. 2018. Multivariate analysis for adaptability and yield stability of rapeseed (Brassicanapus L.) strains in different agroclimatic zones. Genetika. 50(2): 369-378.
- Government of Punjab. 2021. Crop Reporting Services 2021, Provisional estimates of rapeseed and mustard crop in Punjab, Pakistan.

- Government of Punjab. Crop Reporting Services. 2020. Provisional estimates of rapeseed and mustard crop in Punjab. Pakistan.
- Iqbal M., Akhtar N., Zafar S., Ali I. 2008. Genotypic responses for yield and seed oil quality of two brassica species under semiarid environmental conditions. South Afr. J.Bot.74:567-571.
- Mahmood T., Mustafa H.S.B., Aftab M., Ali Q. and Malik A. Super canola:newly developed high yielding, lodging and drought tolerant double zero cultivar of rapeseed (Brassica napus L.). Genet. Mol. Res. 2019; 18: 1603995.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were

[Citation: Ahmad, I., Saleem, S., Ghazali, H.M.Z.U., Masood, S.A., Jamil, M., Faheem, U., Hussain, F. (2022). Khanpur canola (KN-279); newly approved long siliqued, bold seeded higher yielding with improved quality, double zer0 (00) variety of rapeseed (Brassica napus L.). Biol. Clin. Sci. Res. J., 2022: 119. doi: https://doi.org/10.54112/bcsrj.v2022i1.119]

made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view а copy of this licence, visit http://creativecommons.org/licen ses/by/4.0/. © The Author(s) 2022

[Citation: Ahmad, I., Saleem, S., Ghazali, H.M.Z.U., Masood, S.A., Jamil, M., Faheem, U., Hussain, F. (2022). Khanpur canola (KN-279); newly approved long siliqued, bold seeded higher yielding with improved quality, double zer0 (00) variety of rapeseed (*Brassica napus* L.). *Biol. Clin. Sci. Res. J.*, **2022**: *119*. doi: https://doi.org/10.54112/bcsrj.v2022i1.119]