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Abstract As population grows, abiotic stresses reduce plant growth and agricultural output, affecting global food 

security. Heat, cold, drought, salinity, and heavy metals affect crops. Heat stress from climate change disrupts 

cellular metabolism and lowers productivity. Tropical and subtropical crops suffer physiologically from cold stress. 

Climate variability affects drought, reducing crop output and germination. Salinity stunts growth and causes 

nutritional imbalances in big agricultural areas. Heavy metal buildup in soils threatens plant health. To overcome 

these problems, plants use osmotic adjustment, antioxidant defenses, and stress signaling pathways. CRISPR/Cas9 

and other genetic engineering and molecular breeding methods may improve crop stress tolerance. Using omics 

technologies (genomics, transcriptomic, proteomics, and metabolomics) in breeding programs helps us understand 

stress tolerance processes and generate resilient crop types. This research is crucial for sustainable agriculture and 

global food security. 
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Introduction  

Abiotic stress is any environmental condition that 

reduces plant growth and productivity. Rapid 

worldwide growing populations challenged food 

security; thus, plant scientists and agronomists have 

concentrated on abiotic stress for 50 years 

(Hasanuzzaman et al., 2019). Rising food demand 

necessitate agricultural production reductions, 

previously overlooked. Boyer believed 

environmental issues might limit crop productivity 

by 70% in the early 1980s 1. Since then, many 

papers have highlighted abiotic stress-induced crop 

losses 23. Some of these pressures permanently 

damage farmed areas, affecting crop quality and 

yield (Fischer and Connor, 2018). Although 

measuring the effects of abiotic pressures on 

agricultural land is difficult, estimated that 96.5% of 

global rural land is affected. Heat, cold, drought, and 

salinity constantly threaten agricultural land and crop 

productivity (El Sabagh et al., 2020). 

Heat Stress 

Global warming is an serious concern for plant 

scientists due to greenhouse gas emissions and 

human activities (Xi-Liu and Qing-Xian, 2018). 

Greenhouse gases including CO2, methane, nitrous 

oxide, and chlorofluorocarbons are expected to 

gradually raise global ambient temperature in global 

circulation models. The IPCC predicts a 0.3°C rise in 

global average temperature every decade 1. A 1°C 

global temperature rise by 2025 presents enormous 

hurdles, especially given the requirement to feed 

nine billion people by 2050 (Loboguerrero et al., 

2019).  Plants experience heat stress when 

temperatures exceed normal ranges, which affects 

cellular metabolism. According to Wahid et al., heat 

stress occurs when temperatures reach a threshold, 

damaging plant health permanently. While brief 

temperature spikes (10–15°C) are called 'heat shock,' 

heat stress involves complicated mechanisms 

relating to intensity, duration, and temperature 

increase above acceptable ranges (Abbas et al., 2024; 

ALI, 2022; Ul Hassan et al., 2021). Heat stress relies 

on daytime and nighttime heat exposure in certain 

climates. Heat disrupts cellular balance, slowing 

development and killing plants. This stress affects 

world crop production greatly. Rising temperatures 

may indirectly influence agriculture and livestock by 

changing rice, wheat, and corn growing seasons and 

geographical distribution (Malhi et al., 2021). Porter 

suggested that warmer temperatures could extend 

pasture grasses' growing season. Most cereals have a 

small temperature tolerance range, and exceeding it 

during floral transition might impair seed production 

and crop yields. 

Cold Stress 
Many plant species' growing seasons are limited by 

cold stress 1. Since tropical or subtropical crops 
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including maize, rice, tomatoes, bananas, mangoes, 

and papayas are vulnerable to chilling, understanding 

its effects on crops is critical. Depending on degree 

and duration, cold stress can cause freezing or 

chilling. Seedlings are especially susceptible to cold 

stress (Bhattacharya, 2022). Surface lesions, 

browning processes dehydration, induced 

senescence, shelf life reduction, and ethylene 

generation are common. Chilling stress increases 

cellular Ca+ levels, accumulates reactive oxygen 

species (ROS) 2, affects membrane fluidity due to 

fatty acid unsaturation, and modifies cell membrane 

lipid-to-protein ratios (Cheong et al., 2022). 

Dehydration can also result from low temperatures 

impairing water intake. However, freezing damages 

membranes by dehydrating and icing intracellular 

spaces. Ice production damages cells and tissues and 

denaturates proteins and precipitates solutes. Both 

freezing and chilling stress produce ROS, upsetting 

cellular redox equilibrium. As with other abiotic 

stresses, knowing these pathways is crucial to 

producing plant resistance methods (Souza et al., 

2017). 

Drought Stress 

Drought is a major crop productivity inhibitor. 

Climate change may increase water deficits due to 

rainfall variability, increased water demand, and 

diminishing supply (AHMAD et al., 2023; Arshad et 

al., 2024; Guo and Shen, 2016; Rasheed and Malik, 

2022). This will harm all organisms, but it will hurt 

plants without mobile structures that may migrate 

when food and water are low, hurting agricultural 

production. Due to rainfall patterns, soil water 

holding capacity, and evapotranspiration, drought 

stress damage is hard to assess(Tramblay et al., 

2020) . Well-studied drought stress impacts on crop 

physiology and development. A global 1980–2015 

study found drought reduced wheat and maize 

production by 21% and 40% . Poor germination, 

seedling growth, food availability, photosynthesis, 

leaf number and size, fresh and dry weight, etc. are 

caused by drought. Dry weather can also make pearl 

millet (Pennisetum glaucum L.) sterile by disrupting 

nutrition transfer to the growing ear. Coffee 

production may decline 80% due to dehydration. 

Abrahão and Costa (2018) showed that a 45-day 

Parana, Brazil, drought reduced soybean harvest by 

80% in 2008/2009. Drought causes stomatal closure, 

decreased transpiration, etc. Plants also alter gene 

expression to resist drought (BASHIR et al., 2023; 

Cao et al., 2017; Haider et al., 2023). 

Salt Stress 

Water and soil salinity can impair crop productivity 

in dry or semi-arid regions. Salinity affects 800 

million hectares worldwide, according to 2011 

research (Junaid and Gokce, 2024; Kumar and 

Sharma, 2020). The same study anticipated 17 

million hectares of salinity-affected farmland by 

2050. Salinity damages plants due to soil low 

osmotic potential, nutritional imbalance, ion effect, 

or a combination. These variables adversely affect 

plant growth and development. Growth slows, leaves 

decrease, and roots shorten (Lambers et al., 2019; 

Mushtaq et al., 2024; Rasheed et al., 2024; 

REHMAN et al., 2020). Osmotic effects of salinity 

affect leaf color, root/shoot ratio, and maturity. 

Salinity, like other abiotic stressors, impacts plants 

differently depending on duration and severity. 

Salinity increases cytotoxic ion levels, slows 

metabolic activity, and causes early senescence and 

cell death (Isayenkov and Maathuis, 2019). It also 

closes stomata and inhibits shoot-specific cell 

expansion. Plants withstand salinity by physio-

molecular mechanisms, osmotic and ionic tolerance, 

and tissue tolerance (Khan et al., 2019). Osmotic 

tolerance reduces stomatal conductance during fast 

root-shoot transmission to preserve water. Activating 

several signaling cascades restricts net Na+ inflow 

and translocation for ionic tolerance (Fatima et al., 

2023; Ketehouli et al., 2019). Translocating toxic 

ions to the vacuole prevents cytoplasmic metabolic 

effects and develops tissue-specific tolerance. The 

salt overload sensitive (SOS) pathway drives 

detrimental ions to the vacuole via many SOS genes 

(Yuan et al., 2019).  

Heavy Metal Stress 

Heavy metals (HMs) like Mn, Cu, Ni, Co, Cd, Fe, 

Zn, and Hg have accumulated in soils due to 

fertilizer application, incorrect industrial waste 

disposal, unregulated sewage discharge, and casual 

automotive effluent disposal. Metals leak into 

groundwater or collect on soil. HM stress is non-

biodegradable and cannot naturally disappear from 

the environment (Chowdhury and Rahman, 2024). 

Enzymes are inactivated or denaturated by HM 

stress. Reports show that HMs impair biomolecule 

substitution processes with critical metallic ions, 

impacting membrane integrity, photosynthetic 

capabilities, and respiration. Furthermore, HMs 

cause oxidative stress by increasing H2O2, O−2, and 

OH radical generation (Al Mahmud et al., 2019). 

HM accumulation, especially in roots (owing to 

Casparian strips or root cell walls), inhibits plant 

physio-morphological functions and reduces 

agricultural output (Wahab et al., 2022). 

Mechanisms of Abiotic Stress Tolerance 

Abiotic Stress Resilience in Plants 

Drought, salinity, extreme temperatures, and heavy 

metals reduce plant growth and productivity. Plants 

have developed complex mechanisms to survive and 

thrive in harsh conditions. These mechanisms must 

be understood to develop biotechnological plant 

resilience strategies. 

 Adjusting Osmotically 

 Drought and salinity cause plants to adjust 

osmotically. 
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 To maintain cellular turgor and structure, they 

store proline, glycine betaine, and sugars. 

 Osmolytes remove ROS and stabilize membranes 

and proteins (Khan et al., 2023). 

 Plants improve water uptake and retention by 

changing root architecture and expressing 

aquaporins. 

Antioxidant Defences: 

 Plants use antioxidant defenses to combat ROS-

induced oxidative stress. 

 Antioxidants include ascorbate, glutathione, 

catalase, peroxidases, and superoxide dismutase. 

 ROS are eliminated by these antioxidants, 

protecting cells. 

 ABA and other stress-induced signaling 

pathways regulate antioxidant enzyme 

expression. 

Stress Signaling 

 Abiotic stress signals trigger complex plant 

responses. 

 Ca2+, ROS, and phytohormones like ABA, 

ethylene, and jasmonic acid are crucial. 

 These molecules activate stress-responsive genes 

via protein kinases and transcription factors. 

 In drought, ABA accumulates and activates genes 

involved in stomatal closure (Ha et al., 2018), 

osmoprotectant synthesis, and stress-related 

protein production. 

 

Molecular Chaperones and HSPs 

 These proteins prevent stress-induced protein 

misfolding. 

 For cellular protein balance, HSPs fold, stabilize, 

and degrade proteins. 

 To protect vital cellular machinery, HSPs are 

upregulated in response to heat, cold, or other 

stresses. 

Traditional Breeding vs. Biotechnological 

Approaches 

Plant breeding programs improve crop productivity 

and nutrition by improving resilience to biotic or 

abiotic stress and quality traits. Agrochemical use is 

restricted, and insects, fungi, bacteria, viruses, and 

nematodes are becoming more virulent (Deka et al., 

2021). Due to climate change, plant breeders must 

select water- and thermal-resistant genotypes to 

adapt to changing rainfall patterns and rising 

temperatures. 

Raina et al. (2020) developed genetically improved 

crop plants with higher yield, quality, and stress 

resilience through mutagenesis and crossings. Since 

germplasm introgression was impossible in the 

1920s, radiation or chemicals have been used to 

mutate. Genetic engineering and biotechnologies 

have given geneticists and breeders new tools to 

create GMOs in the last century (Ricroch et al., 

2022). This approach has improved disease 

resistance, abiotic stress resistance, nutritionally 

improved GMOs, and GMO limitations and 

concerns. 

Plant breeders can now isolate and transfer genes 

from sexually incompatible plant species and other 

organisms to crops (Muñoz-Sanz et al., 2020). While 

GM crops covered 191.7 million hectares in 2018 

with great benefits,public health and environmental 

concerns remain. Many citizens oppose transgene 

insertion in crop genomes, which contain selectable 

markers like antibiotic resistance. Many methods 

have been developed to overcome GM crop 

limitations, including genome editing (Kamthan et 

al., 2016). 

NGS technologies have advanced crop genomics and 

published many reference crop genomes in the last 

15 years. High-throughput re-sequencing of 

hundreds of genotypes revealed domesticated and 

wild plant allele diversity (Razzaq et al., 2021). 

Genome structure data helped understand plant 

domestication history, identify genes for 

agrochemical traits and gene functions, and develop 

NPBTs to overcome major GMO regulatory 

evaluation processes and public concerns. NPBTs 

transfer one gene, like cisgenesis and genome 

editing. 

Potato, apple, grapevine, melon, wheat, barley, 

poplar, rice, and strawberry were GMOs. Many 

studies focused on pathogen resistance, but some on 

quality trait improvement. Haverkort et al. (2016) 

created four cisgenic late blight (Phytophthora 

infestans)-resistant potato varieties without markers 

by transferring one to three resistance genes. 

Inserting the apple scab (Venturia inaequalis) 

resistance gene Rvi6 into the susceptible cultivar 

‘Gala’ created cisgenic apple varieties (Švara et al., 

2024). Recombinase R was induced with 

dexamethasone to remove the selectable marker 

gene. Three years after field testing, cisgenic plants 

were resistant .Kleidon et al. (2020) found that the 

same recombinase system can remove the green 

fluorescent protein reporter gene in bananas. 

In plant immune responses, pathogen virulence, and 

plant–microbe interactions, sRNAs and RNAi 

regulate gene expression. After RNAi machinery 

was discovered, plant protection efforts increased 

(Liu et al., 2021). RNAi down-regulates target RNA 

post-transcriptionally for endogenous transcript 

regulation and viral defense, a conserved plant 

regulatory strategy. RNase III DICER-LIKE 

endonucleases cleave dsRNA into 21-24 nt siRNAs 

after cell production (Fukudome and Fukuhara, 

2017). One siRNA strand forms RISCs with 

ARGONAUTE (AGOs) proteins after cleavage 

(Willkomm et al., 2017). RISCs cleave or repress 

mRNA in post-transcriptional gene silencing (PTGS) 

using sequenced-based complementarity (Figure 4). 

Repressive chromatin marks in target genomic DNA 
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sequences can also cause siRNA-induced TGS. Plant 

host–pathogen interactions involve siRNAs. Viral 

cells directly produce siRNAs by processing viral 

genome dsRNA molecules (Santos et al., 2019). 

Evidence suggests that siRNAs produced in one cell 

can spread via plasmodesmata to surrounding cells 

and distal plant parts via the vascular system, 

causing systemic silencing. Studies are ongoing on 

SiRNA short- and long-distance transport to the 

plant (Kehr et al., 2022). 

Genetic Engineering for Abiotic Stress Tolerance 

Molecular breeding and genetic engineering allow 

quick genome-edited crop output. Genetic 

engineering may help plants overcome reproductive 

difficulties (Parmar et al., 2017). Transgenic 

breeding has increased crop productivity due to its 

shortened breeding period. Despite their large and 

complicated genomes, Arabidopsis, cucumber, 

tomato, and rice have genome sequences. The 

development of new molecular breeding markers is 

made easier by cost-effective sequencing of novel 

crops and agricultural kinds using ‘next-generation 

sequencing’ technology (Khan et al., 2017). 

Plant physiology advances our understanding of 

drought-tolerant systems and characteristics. 

Molecular and genomic selection methods identify 

QTLs and genes linked with these features (Yadav 

and Sharma, 2016). To develop drought-resistant 

transgenic crops, scientists must identify candidate 

genes for plant tolerance to various abiotic stresses. 

QTL mapping identifies drought tolerance genes that 

can be introduced into suitable crops via genetic 

engineering and marker-assisted selection (Kiriga et 

al., 2016). 

Plant engineering methods for abiotic stress 

tolerance have been studied for 20 years. Research 

on gene expression in plant defense signaling 

networks found abiotic stress-tolerant proteins 

(Aftab and Roychoudhury, 2021). Recent genetic 

transformation has improved plant stress tolerance. 

Transgenic Plants and Stress Resistance 

Abiotic stressors have been mitigated by plant 

defenses. Breeding or genetically engineering stress-

tolerant plants requires understanding stress response 

systems and key regulators (Marwein et al., 2019). 

Recent advances in plant genomes and omics have 

illuminated stress signaling pathways and abiotic 

stress response components. 

The general signaling route for any abiotic stress 

has several main steps: 

i.Signal Perception: Plants receive stress signals 

directly or indirectly from other organs. 

ii.Signal Transduction: Stress signals activate stress-

type-specific genes. 

iii.These genes produce proteins that help plants 

withstand stress. 

iv.Complex gene networks control plant metabolism, 

cell development, division, and differentiation. 

v.Many stress transduction pathways rely on protein 

kinases and phosphatases for signal relay. Terminal 

transducers (TFs) interact with gene promoter cis-

elements to directly influence downstream gene 

expression. Researchers have identified and 

characterized TFs implicated in plant abiotic stress 

responses, including AP2/EREBP, MYB, WRKY, 

NAC, and bZIP. 

CRISPR/Cas9 and Genome Editing 

The resilient CRISPR-Cas9 genome engineering 

technique has been used in bacteria, mammals, and 

plants. Effective gene editing makes it useful for 

crop development and offers many research 

opportunities (Arora and Narula, 2017). CRISPR-

Cas9 works on Arabidopsis, Oryza, Nicotiana, 

wheat, maize, tomato, soybean, and sorghum. 

Several components are needed to improve plant 

abiotic stress tolerance utilizing CRISPR/Cas9 

gene editing: 

i. Selecting an appropriate Cas9 promoter. 

ii. Designing gene-targeted guide RNAs. 

iii. Generate novel alleles for abiotic stress-

responsive genes. 

iv. Effectively delivering altered genes to plant 

cells. 

CRISPR/Cas9 has been used to improve Arabidopsis 

drought stress tolerance by leveraging the ABRE1 

genetic characteristic (Table 1). Rice mutants 

(OsPQT3) with increased paraquat tolerance were 

created using CRISPR/Cas9 (Alfatih et al., 2020). 

The CRISPR/Cas system has quickly replaced ZFN 

and TALEN as a standard genome editing approach 

due to its simplicity, adaptability, stability, and ease 

of transformation (Li and Xia, 2020). 

Table  1 . Stress responsive enzymes and techniques for modifications 

Osmotical 

Adjustment 

Antioxidant 

Defences 

Stress 

Signaling 

Molecular 

Chaperones 

and HSPs 

Genetic 

Engineering 

for Abiotic 

Stress 

Tolerance 

Transgenic 

Plants and 

Stress 

Resistance 

CRISPR/Cas9 

Proline 

Accumulation 

Enzymatic 

Antioxidants 

Calcium 

Signaling 

Heat Shock 

Proteins 

(HSPs) 

Overexpression 

of Stress-

Responsive 

Genes 

Drought-

Resistant 

Transgenic 

Plants 

Gene 

Knockouts 
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Glycine Betaine Non-

Enzymatic 

Antioxidants 

ABA 

Signaling 

Small Heat 

Shock Proteins 

(sHSPs) 

Gene Silencing 

(RNAi) 

Salt-

Tolerant 

Transgenic 

Plants 

Gene Insertions 

Compatible 

Solutes 

Reactive 

Oxygen 

Species 

(ROS) 

Scavenging 

MAP Kinase 

Pathways 

Chaperonins Transcriptional 

Regulation 

Cold-

Resistant 

Transgenic 

Plants 

Targeted 

Mutations 

Osmoprotectants Ascorbate-

Glutathione 

Cycle 

Reactive 

Oxygen 

Species 

(ROS) 

Co-chaperones Stress-Induced 

Promoters 

Heat-

Tolerant 

Transgenic 

Plants 

Promoter 

Editing 

Osmolytes Catalase 

Activity 

Mitogen-

Activated 

Protein 

Kinases 

(MAPKs) 

Chaperone-

Assisted 

Protein 

Folding 

Gene Stacking Multi-Stress 

Resistant 

Transgenic 

Plants 

Site-Specific 

Mutagenesis 

Cellular Water 

Balance 

Superoxide 

Dismutase 

(SOD) 

Hormonal 

Cross-Talk 

HSP70, 

HSP90 

Use of Model 

Plants for Stress 

Studies 

Pest-

Resistant 

Transgenic 

Plants 

Base Editing 

Salt Exclusion 

Mechanisms 

Peroxidases Secondary 

Messengers 

Folding 

Enzymes 

Marker-Assisted 

Selection 

Nutrient-Use 

Efficiency in 

Transgenic 

Plants 

Genome-Wide 

Association 

Studies 

(GWAS) 

This RNA-guided defense system evolves to protect 

bacteria and archaea from mobile genetic elements 

and bacteriophages (Rocha and Bikard, 2022). 

Recent initiatives include SpCas9-VRQR, xCas9, 

and Cas9-NG, which target non-canonical PAM sites 

in plants, to enhance its genome-targeting 

capabilities (Table 2). 

Omics Technologies in Abiotic Stress Research 

Genomics 

Molecular marker and genomic technologies can 

improve breeding efficiency, especially abiotic stress 

tolerance. Genomic integration into breeding 

programs is exciting with next-generation 

sequencing and high-throughput phenotyping 

(D’Agostino and Tripodi, 2017). Genome-assisted 

breeding uses our knowledge of genetic 

characteristics and sequence variants to modify 

genomes precisely. The richness of ‘omics’ data is 

quickly improving our understanding of plant abiotic 

stress tolerance genes and variations (Yang et al., 

2021). Given the urgency of global food security, 

crop development is becoming more viable with this 

information. 

Transcriptomic 
Transcriptomic studies all RNAs transcribed by cells 

or tissues, including coding and non-coding. It 

illuminates gene transcription, structure, function, 

and control. Technology advances in transcript 

sequencing and analysis have advanced this field 

(Hedlund and Deng, 2018). Northern blotting and 

RT-PCR only examined single transcripts or small 

groups. However, microarrays enabled simultaneous 

investigation of thousands of genes, revolutionizing 

transcript profiling. RNA-Seq and real-time RT-PCR 

have improved our understanding of gene regulation 

networks and epigenetics (Steyaert et al., 2016). 

ESTs, SAGE, and digital gene expression analysis 

were also used in early transcriptomics research. 

These methods led to present transcriptomics 

technologies, which help explain gene expression 

regulation and biological activities (Casamassimi et 

al., 2017). 

Proteomics 

Targeted techniques require proteomic investigations 

to investigate complex cellular relationships and 

comprehend protein function during abiotic stress 

(Kosová et al., 2018). Recent advances in methods, 

sample regimens, and bioinformatics enable high-

throughput mass-spectrometry protein research. 

Proteomics processes use gel-free and 2-DE 

methods. For instance, nonreducing circumstances 

and MS-based proteomics revealed 60 novel peanut 

proteins. Subcellular proteomics helps study 

localized cellular responses and subcellular 

interactions during plant growth under abiotic 

stressors (Kosová et al., 2018). 

Metabolomics 

Metabolomics analyzes all biological metabolites, 

including volatile primary metabolism components. 

Due to their complexity, metabolites cannot be 

detected simultaneously. NMR is a common 

analytical instrument but more sensitive than others 

(Marshall and Powers, 2017). GC-MS is a standard 

method for detecting metabolites, however it heats 
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samples to gas. LC-MS is more adaptable and no 

chemical derivatization of nonvolatile metabolites is 

needed (Sun et al., 2021). Metabolomics research 

often uses ultra-performance liquid chromatography 

(UPLC) for its speed and sensitivity (Perez de Souza 

et al., 2021). Metabolomics studies use LC/GC-MS, 

NMR, chemometrics, and multivariate statistical 

analysis to study plant metabolites, which are quite 

varied. The goal of guided metabolomics is to 

identify and quantify as many metabolites as 

possible within a chemical group. 

 

Table  2.  Stress types and genetic response

Genomics Transcriptomics Proteomics Metabolomics Role of 

Epigenetics in 

Stress 

Tolerance 

Genome 

Sequencing 

Metal Stress 

Tolerance 

Identification 

of Stress-

Responsive 

Genes 

Differential Gene 

Expression 

Stress-Induced 

Protein 

Changes 

Metabolite 

Profiling 

DNA 

Methylation 

Patterns 

Whole-

Genome 

Sequencing 

Heavy Metal 

Accumulation 

Gene 

Mapping and 

Functional 

Genomics 

RNA Sequencing 

(RNA-Seq) 

Protein 

Quantification 

Secondary 

Metabolite 

Analysis 

Histone 

Modifications 

Next-

Generation 

Sequencing 

(NGS) 

Metal 

Transporters 

Comparative 

Genomics 

Expression of 

Stress-Related 

Transcripts 

Post-

Translational 

Modifications 

Primary 

Metabolite 

Analysis 

Chromatin 

Remodeling 

Whole-

Genome 

Resequencing 

Chelation 

Mechanisms 

Gene 

Functional 

Annotation 

Transcript 

Profiling 

Proteome 

Changes in 

Response to 

Stress 

Metabolite 

Pathway 

Analysis 

Small RNA 

Involvement 

Comparative 

Genomics and 

Sequencing 

Metal 

Detoxification 

Structural 

Genomics 

Gene Expression 

Dynamics 

Protein-Protein 

Interactions 

Metabolite 

Quantification 

and 

Identification 

Epigenetic 

Regulation of 

Stress Genes 

High-

Throughput 

Sequencing 

Genetic 

Variants 

Associated with 

Metal 

Tolerance 

 

 Biotechnological Innovations in Stress Signal 

Transduction Pathways 
Biotechnological advances in stress signal 

transduction pathways have helped researchers 

understand how plants perceive and respond to 

stress. MicroRNAs (miRNAs) govern plant 

processes indirectly by regulating target mRNA 

abundance and spatial–temporal accumulation (Song 

et al., 2019). MiRNA fine-tuning is a strong 

biotechnology technique to improve abiotic or biotic 

stress tolerance in economically important crops. 

Role of Epigenetics in Stress Tolerance 
Plant stress tolerance, acclimatization, adaptation, 

and evolution depend on epigenetics. Progenies 

inherit stress-induced chromatin alterations that 

change gene expression but not DNA sequence 

(Kumar, 2018). These alterations affect DNA bases, 

histones, and tiny non-coding RNAs. Methylation of 

a promoter can suppress gene transcription, while 

methylation of a coding area can silence a gene post-

transcriptionally (Zhong et al., 2023). Epialleles also 

contribute to agricultural enhancement. DNA 

methylation is mostly found in transposable elements 

(TEs) and genes in eukaryotic genomes. Genome 

sequencing has revealed the structure and function of 

protein-coding genes in any species' chromosomes, 

as well as non-coding elements like transposons and 

promoters (Polychronopoulos et al., 2017). This is 

essential for understanding evolution and 

diversification. 

Genome Sequencing and Pangenomics in 

Improving Drought Tolerance 
Genome sequencing can identify upstream 

regulatory elements of each gene and directly access 

the structural and functional aspects of protein-

coding genes organized in any species' chromosomes 

to improve drought tolerance. Pangenome, which 

includes all genetic information in species 

accessions, has garnered attention (Zhang et al., 

2021). Plant pangenomics depends on the reference 

assembly's size, completeness, annotation, selection, 

and extensive phenotyping of relevant genotypes 

(Hurgobin and Edwards, 2017). 

Role of NGS in Abiotic Stresses 
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Next-generation sequencing, high-throughput 

genotyping, precision editing, and space 

technologies have boosted crop improvement efforts, 

creating more resilient cultivars (Singh et al., 2020). 

Studies on plant responses to single and combined 

stress have revealed molecular processes governing 

tolerance to different stress levels. Many researchers 

examine salt damage and salt-tolerance pathways, 

and transgenic technology is a fast and effective way 

to create salt-tolerant types (Muchate et al., 2016). 

To combat osmotic and ionic stress, plants evolve 

biochemical and molecular mechanisms like 

selective accumulation or exclusion of ions, ion 

uptake control, and compartmentalization, synthesis 

of compatible solutes, photosynthetic pathway 

changes, antioxidant enzyme induction, and plant 

hormones.  

Rapid industrialization and urbanization limit plant 

heavy metal stress tolerance. Modern biotechnology 

may design legumes and other plants to overexpress 

stress-induced genes, transcription factors, proteins, 

and metabolites for heavy metal stress resistance 

(Rai et al., 2021). Researchers are still trying to 

understand how plants may endure severe metal 

stress and flourish without harm. 

Biotechnology and Heavy Metal Stress Tolerance 

in Plants 
Plant responses and tolerance to heavy metal stress 

are being studied fast, with omics techniques 

identifying genes activated by metal stress (Jamla et 

al., 2021). Arabidopsis, Brassica, and Lycopersicum 

transcriptome research revealed the role of TFs like 

bHLH, bZIP, AP2/ERF, and DREB. In Oryza sativa, 

Zea mays, Arabidopsis, and Populus sp., heavy metal 

detoxifying proteins are implicated (Benyó et al., 

2016). Heavy metals increase calcium-dependent, 

mitogen-activated protein kinase, ROS, and hormone 

signaling in plants. Plants have several Ca2+ sensors 

that detect, decipher, and report cytosolic Ca2+ 

changes for stress response. In Medicago sativa, high 

Cu and Cd levels activate MAPKs, whereas ROS 

disrupt phytohormone signaling (Mondal, 2023). 

Changes in phytohormone levels affect metal stress 

response. In the next century, high temperatures, 

drought, submergence, soil salinization, and 

nutritional imbalances are expected to worsen. 

Agronomic technologies like abiotic stress-

mitigating microorganisms are needed to maintain 

crop output in suboptimal growing conditions. 

Role of Microbiomes and Endophytes in Abiotic 

Stress Tolerance 
Microbial endophytes, plant tissue symbionts, are 

essential to plant health and growth under abiotic 

stress (Lata et al., 2018). Secondary active 

substances that protect plants from infections and 

extracellular enzymes for colonization boost plant 

growth. Endophytes produce phytohormones and 

help plants flourish in polluted soils. 

Plants' complicated abiotic stress response 

encompasses physiological, biochemical, and gene 

expression alterations. Understanding and promoting 

stress tolerance in commercially significant plant 

species has been done in many ways. various 

endophytes use various signaling pathways for 

different abiotic stresses (Phurailatpam and Mishra, 

2020). 

Future Perspectives and Challenges in 

Biotechnology for Stress Tolerance 
Biotechnology for stress tolerance may generate 

genetically modified (GM) plants with pest-resistant 

or herbicide-tolerant agronomic features. Science 

progress in research and development and regulatory 

restrictions in nations with awaiting marketing 

approvals determine market release timing. 

Biotechnology helps address global issues including 

food security and climate change. Many plants are 

tested for high production despite biotic and abiotic 

stressors. Enhancing carbon absorption, growth, 

biomass yield, and stress-dependent and tissue-

specific promoters are future research priorities. 

Conclusion 

In conclusion, abiotic stresses reduce plant growth 

and agricultural output, threatening global food 

security. Climate change, heat, cold, drought, salt, 

and heavy metal contamination are endangering crop 

harvests worldwide. Plants have developed methods 

to cope with these challenges, and researchers are 

using genetic engineering, molecular breeding, and 

omics to improve crop resilience. Sustainable 

agriculture and food security for a growing 

population depend on understanding and improving 

plant stress tolerance. Research and innovation in 

this subject are needed to meet food demands and 

maintain ecological balance in an uncertain 

environment. 
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