FACTORS ASSOCIATED WITH SEROCONVERSION IN HEMODIALYSIS PATIENTS

ALI FF1*, RIZVI N2, HANIF A3

1Department of Nephrology, The University of Lahore, Lahore, Pakistan
2Department of Nephrology (Head of Dept.), Ghurki Trust Teaching Hospital, Lahore, Pakistan
3Department of Public Health (biostatistician)/Director Research Unit Faculty of Allied Health Science University of Lahore, Lahore, Pakistan

*Correspondence author email address: faisalnaeemi499@gmail.com

(Received, 27th June 2023, Revised 20th November 2023, Published 12th December 2023)

Abstract: In this prospective cohort study conducted at Hijaz Hospital in Lahore from January 2022 to January 2023, we aimed to investigate the prevalence and factors influencing HCV seroconversion in hemodialysis patients. A total of 380 patients participated in the study, responding to a structured questionnaire covering sociodemographic factors and hemodialysis duration. ELISA testing was conducted quarterly, resulting in two groups: HCV-positive and HCV-negative. Results revealed that 63.4% (241 individuals) experienced seroconversion from HCV-negative to HCV-positive status during hemodialysis. Significant associations were observed between HCV seroconversion and emergency hemodialysis at a site other than the primary one (P = 0.017). Other significant associations included IV drug abuse (P = 0.007), blood transfusions (P = 0.001), and dental procedures (P = 0.005). The presence of anemia and the lack of vascular access at the start of hemodialysis were also significantly associated with HCV seroconversion (P = 0.001). However, no associations were found between HCV seroconversion and age, surgical procedures, needle stick injuries, or alcohol intake. In conclusion, this study highlights an alarming HCV seroconversion rate among hemodialysis patients. Factors such as anemia, blood transfusions, duration of dialysis, lack of vascular access, and emergency dialysis demonstrated strong correlations with HCV infectivity. These findings emphasize the importance of implementing stringent infection control measures and vigilant monitoring to mitigate the risk of HCV transmission in hemodialysis settings.

Keywords: Hemodialysis, Hepatitis C virus, Seroconversion, Renal disease

Introduction

HCV is a single-stranded RNA virus belonging to the Flaviviridae family. (Roger et al., 2021) The most important routes of transmission of HCV are intravenous or nasal drug use, vertical transmission, and unsafe medical or surgical procedures. The mode of transmission is blood-borne, due to which there is an increased risk of morbidity and mortality among patients on maintenance dialysis. (Drafting Committee for Hepatitis Management Guidelines, 2020; Holden et al., 2020) The most critical risk factor for getting HCV infection in dialysis patients is the duration of dialysis. IV drug abuse and a history of organ transplantation are other significant factors for transmission. (Guntipalli et al., 2021) HCV infection during dialysis has dramatically increased the morbidity and mortality of dialysis patients. It increases the risk of cardiovascular, hepatic, thrombotic, uremic, and non-uremic morbidity and mortality. (Qayum and Shah, 2023) Chronic HCV infection decreases life expectancy, leads to renal transplant rejection, increases mortality, and diminishes the quality of life. (Bhattacharyya et al., 2023) HCV also increases renal insufficiency due to renal injury and cirrhosis with subsequent renal impairment. HCV can be transmitted pre-dialysis, intra-dialysis, or post-dialysis. The factors may include the number of blood transfusions, duration of blood transfusions, mode of dialysis, prevalence of HCV in the hemodialysis unit, and non-compliance with standard infection control practices. Many of these patients had severe uremic anemia and needed blood transfusion, which is the primary cause of HCV transmission. (Wong et al., 2020) Laboratory diagnosis and detection procedures for HCV have improved dramatically in the past twenty years. This has caused a decline in the spread and transmission of HCV infection. (Zhang et al., 2020) However, the association between Hep C and dialysis patients is vague. The present study verifies the previous findings, explores the risk factors, and identifies the prevalence of factors in hemodialysis patients that lead to the conversion of seronegative patients to seropositive. Detecting those factors and then taking steps to reduce them can lead to reduced disease burden and added load on a patient's health and quality of life.

Methodology

The prospective study was conducted in Hijaz Hospital, Gulberg, Lahore, from January 2022 to January 2023. The study included patients of both genders, aged between 16-80 years, who had renal failure and were on hemodialysis. Patients who had chronic liver disease, who had a family history of HCV, and who were seropositive before the start of the study were excluded. A total of 380 patients were included in the study. The informed consent of the participants was taken. The hospital's ethical review committee approved the study. A structured questionnaire containing questions about sociodemographic factors and the duration of hemodialysis patients was used to collect data. Data was collected from
the nephrology department at Hijaz Hospital, Gulberg, Lahore. Patients underwent ELISA testing once at the start of initiating dialysis and then quarterly. Two groups were made: disease (HCV) positive and disease (HCV) hostile. Data was analyzed using SPSS version 21. Qualitative data was measured from percentages. Mean ± Standard Deviation was calculated for quantitative data, i.e., age and duration of disease. Post–stratification Chi-square test was used for the association of socio-demographical factors, gender, and duration of disease with seroconversion of hemodialysis patients. P value of less than or equal to 0.05 (P ≤ 0.05) was taken as significant.

Results

The study consisted of 380 patients in total who were undergoing hemodialysis sessions thrice weekly. Of these 380 patients, 64.21% (244) were males and 35.7% (136) were female. The results reveal that 63.4% of patients (241) seroconverted from negative to positive HCV status during the hemodialysis. 65.6% of males and 34.4% of females seroconverted while on HD, but this difference was insignificant.

57.3% of patients undergo hemodialysis in emergency sites and acquire the illness. There was a significant association between HCV seroconversion and HD in emergencies other than the primary site (P =0.017). The hemodialysis duration was significantly associated with HCV seroconversion in patients (P=0.035). The duration of 1-5 years was found to be associated with most of the seroconverted cases. There was a significant association of HCV seroconversion with IV drug abuse (P=0.007), blood transfusions (P=0.001), and dental procedures (P=0.005). 61.5% of hemodialysis patients had anemia and required blood transfusions. The presence of anemia is found to be significantly associated with HCV seroconversion. The lack of vascular access at the start of hemodialysis was associated with HCV seroconversion. 14.9% of patients had a proper vascular route when starting renal replacement therapy. The rest of the 85.1% population did not have a pre-formed vascular route to initiate dialysis. These 85.1% (205) patients developed HCV during their dialysis later on (P=0.001). There was no association of HCV seroconversion with age, surgical procedures, needle stick injury, and alcohol intake.

Table I Factors associated with HCV seroconversion in HD patients

<table>
<thead>
<tr>
<th>Variables</th>
<th>Constructs</th>
<th>Yes</th>
<th>No</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td>Male</td>
<td>158 (65.6%)</td>
<td>86 (61.9%)</td>
<td>0.471</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>83 (34.4%)</td>
<td>53 (38.1%)</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>18-35</td>
<td>56 (23.2%)</td>
<td>36 (25.9%)</td>
<td>0.844</td>
</tr>
<tr>
<td></td>
<td>36-55</td>
<td>104 (43.2%)</td>
<td>58 (41.7%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>56-75</td>
<td>81 (33.6%)</td>
<td>45 (32.4%)</td>
<td></td>
</tr>
<tr>
<td>HD was done at the emergency</td>
<td>Yes</td>
<td>138 (57.3%)</td>
<td>62 (44.6%)</td>
<td>0.017</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>103 (42.7%)</td>
<td>77 (55.4%)</td>
<td></td>
</tr>
<tr>
<td>Is the place of dialysis the same as the start</td>
<td>Yes</td>
<td>44 (18.3%)</td>
<td>51 (36.7%)</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>197 (81.7%)</td>
<td>88 (63.3%)</td>
<td></td>
</tr>
<tr>
<td>Alcohol intake</td>
<td>Yes</td>
<td>2 (0.8%)</td>
<td>4 (2.9%)</td>
<td>0.132</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>239 (99.2%)</td>
<td>135 (97.1%)</td>
<td></td>
</tr>
<tr>
<td>Dental treatment</td>
<td>Yes</td>
<td>43 (17.8%)</td>
<td>7 (5.0%)</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>198 (82.2%)</td>
<td>132 (95.0%)</td>
<td></td>
</tr>
<tr>
<td>IV drug abuse</td>
<td>Yes</td>
<td>8 (3.3%)</td>
<td>0 (0.0%)</td>
<td>0.007</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>233 (96.7%)</td>
<td>139 (100.0%)</td>
<td></td>
</tr>
<tr>
<td>History of surgical procedure</td>
<td>Yes</td>
<td>10 (4.1%)</td>
<td>8 (5.8%)</td>
<td>0.483</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>231 (95.9%)</td>
<td>131 (94.2%)</td>
<td></td>
</tr>
<tr>
<td>Blood transfusion</td>
<td>Yes</td>
<td>111 (46.1%)</td>
<td>38 (27.3%)</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>130 (53.9%)</td>
<td>101 (72.7%)</td>
<td></td>
</tr>
<tr>
<td>Anemia</td>
<td>Yes</td>
<td>148 (61.4%)</td>
<td>38 (27.3%)</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>93 (38.6%)</td>
<td>101 (72.7%)</td>
<td></td>
</tr>
<tr>
<td>Needle stick injury</td>
<td>Yes</td>
<td>2 (0.8%)</td>
<td>2 (1.4%)</td>
<td>0.58</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>239 (99.2%)</td>
<td>137 (98.6%)</td>
<td></td>
</tr>
</tbody>
</table>

Discussion

Pakistan is a country with a considerable HCV prevalence rate. It is a well-acknowledged finding that patients undergoing hemodialysis are at an elevated risk of acquiring hepatitis C infection. The present study found that 63.4% of hemodialysis patients seroconverted from negative to positive status during dialysis. The prevalence rate of HCV in the general population is around 6.2%. (Khan et al., 2020) Compared to this general prevalence rate, our study reported a more than 10 times higher incidence rate of HCV among hemodialysis patients. This prevalence rate complies with an earlier study that reported a 75% positivity rate of HCV in patients undergoing hemodialysis. (Jadoul et al., 2019)

According to a pooled analysis of 19 Pakistan-based studies on the prevalence rate of HCV in hemodialysis patients, 32.33% of the population with end-stage renal disease suffer from HCV. The higher incidence rate in our study could be due to the limited sample size (380 patients) compared to 3446 hemodialysis patients analyzed in the meta-analysis. (Akhtar et al., 2020)

![Figure 1: Association of time duration with HCV seroconversion in HD patients](image)

The study found that a significant number of patients (17.3%) who developed HCV underwent dental treatment, designating dental procedures as a significant source of HCV in hemodialysis patients. Similar results were found by Ali et al., who found dental treatment as a potential source of transmitting HCV in 13.3% of hemodialysis patients. (Akhtar et al., 2020) Blood transfusion is considered one of the important vehicles of hepatitis transmission due to the absence of proper blood screening protocols before transfusion. Multiple studies in Pakistan (Haqqi et al., 2019), (Mehmood et al., 2020) and around the globe (Jadoul et al., 2019) affirmed that transfusion of blood products acts as a significant risk factor in acquiring HCV. In our study, the duration of hemodialysis is a significant risk factor, and many previous studies confirmed this factor as an independent risk factor for developing HCV. (Abdelsalam et al., 2019) In our study, the absence of vascular access at the start of the hemodialysis procedure also acted as a source of HCV. A similar retrospective study reported vascular access's role in acquiring HCV. The authors explained that the patients with synthetic grafts and arteriovenous fistula were more prone to HCV transmission than those who had permanent catheters. (Dharmesti et al., 2022) In our study, 33.3% of hemodialysis patients weren't infected with the hepatitis C virus. However, the present study was single-point prevalence research. The negative results don't exclude the risk of nosocomial transmission of Hep C over time. The study, however, found no significant correlation between gender, needle pricks, Alcohol intake, IV drug administration, and surgical procedures with the development of HCV in hemodialysis patients. In contrast to our results, a previous study found that male patients are at higher risk of developing HCV than their female counterparts. (Vinayakumar and John, 2020) Another study also reported contrasting findings revealing the significant role of previous surgery in the positivity rate of HCV infection. (Kerollos et al., 2020) The limitation of our study is the small sample size; more extensive multicenter studies are recommended to confirm the findings of our study.

Conclusion

The HCV seroconversion rate is found to be extremely high in dialysis patients. The presence of anemia, blood transfusions, duration of dialysis, lack of vascular access, and emergency dialysis were strongly correlated with HCV infectivity.

Declarations

Data Availability statement
All data generated or analyzed during the study are included in the manuscript.

Ethics approval and consent to participate.
Approved by the department concerned.

Consent for publication
Approved

Funding
Not applicable

Conflict of interest
The authors declared an absence of conflict of interest.

Authors’ Contribution

FAIQA FATIMA ALI
Conception of Study, Development of Research Methodology Design, Study Design, Review of Literature, Drafting article, Review of manuscript, final approval of manuscript

NABHA RIZVI
Review of Literature, Drafting article

ASIF HANIF
Data entry and Data analysis

References


Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. © The Author(s) 2023